设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于PET/CT图像纹理参数的肺结节诊断模型

Diagnostic models of pulmonary nodules based ontexture features of PET/CT images

作者: 马圆  陈斯鹏  田思佳  梁志刚  崔春蕾  郭秀花 
单位:首都医科大学公共卫生学院(北京100069)
关键词: PET/CT;肺结节;图像纹理;诊断模型;支持向量机 
分类号:R318.04
出版年·卷·期(页码):2017·36·3(257-261)
摘要:

目的 基于PET/CT融合图像纹理参数建立肺结节良恶性诊断模型,提高肺癌的识别率。 方法 选取宣武医院核医学科经PET/CT检查的52例肺结节患者,收集其PET/CT影像图像及人口学、影像学信息。以Contourlet变换和灰度共生矩阵相结合的方式,对PET/CT图像的感兴趣区域提取纹理参数。基于所提取的纹理参数建立支持向量机模型,得到每个肺结节良恶性判别结果。为了提高模型的诊断效果,将结节边缘、最大摄取值、有晕征等影像学信息也纳入模型,重新建立支持向量机模型。通过灵敏度、特异度、正确率等指标对模型诊断效果进行评价。结果 纹理参数肺结节诊断模型的灵敏度、特异度分别为90.7%、93.5%,纹理参数结合影像学信息的肺结节诊断模型的灵敏度、特异度分别为95.7%、100.0%。结论 基于PET/CT图像纹理参数建立的支持向量机模型对良恶性肺结节具有较好的鉴别诊断效果。

Objective  To establish diagnostic models for pulmonary nodules based on texture features of PET/CT images and improve the identification of lung cancer.Methods  We selected 52 patients who underwent 18F-PET/CT scan from the Department of Nuclear Medicine of Capital Medical University Xuanwu Hospital,then the PET/CT images and the information of demography and medical imaging were collected .The PET/CT texture parameters were extracted by Contourlet conversion and co-occurrence matrix arithmetic.Based on which we built the SVM (support vector machine) diagnosis models and got the results of classification for each pulmonary nodule.To improve the effectiveness of diagnostic models,we also built SVM models with the parameters of nodule margin,maximum standard uptake value and halo sign.At last we evaluated the effectiveness of the diagnostic models by the index of sensitivity,specificity,accuracy,etc.Results The diagnostic model of texture features had the sensitivity of 90.7% and specificity of 93.5%.The diagnostic model based on texture plus medical imaging information had the sensitivity of 95.7% and specificity of 100.0%.Conclusions  This diagnosis models based on texture features of PET/CT images have good classification of  benign and malignant nodules.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com