设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于改进的模糊C-均值聚类算法及支持向量机的眼底图像中硬性渗出检测方法

Hard exudates detection method in fundus images based onimproved fuzzy C-means and support vector machine

作者: 高玮玮  沈建新  程武山  王明红  左晶 
单位:上海工程技术大学机械工程学院(上海<p>201620)</p><p></p>
关键词: 眼底图像;糖尿病视网膜病变;硬性渗出;模糊C-均值;支持向量机 
分类号:R318.04;TP391.41
出版年·卷·期(页码):2017·36·4(331-337)
摘要:

目的 提出一种基于改进的模糊C-均值(improved fuzzy C-means,IFCM)聚类算法及支持向量机(support vector machine,SVM)的检测算法,以实现对眼底图像中硬性渗出的自动识别。方法 首先利用改进的FCM算法对由江苏省中医院眼科提供的120幅彩色眼底图像进行粗分割以获取硬性渗出候选区域;其次,利用Logistic回归对候选区域提取出的特征进行选择,并利用候选区域的优化特征集及相应判定结果建立SVM分类器,实现眼底图像中硬性渗出的自动检测;最后利用该方法对65幅眼底图像进行硬性渗出自动检测。结果 硬性渗出自动检测得到的病灶区域水平灵敏度96.47%,阳性预测值90.13%;图像水平灵敏度100%,特异性95.00%,准确率98.46%;平均一幅图像处理时间4.56 s。结论 利用改进的FCM算法与识别率较高的SVM分类器相结合的方法能够高效自动地识别出眼底图像中的硬性渗出。

Objective To detect hard exudates automatically in fundus images,an detecting method based on improved fuzzy C-means (IFCM) and support vector machine(SVM) is proposed. Methods Firstly, 120 color fundus images gotten from Department of Ophthalmology, Jiangsu Province Hospital of  TCM were segmented by IFCM, and candidate regions of hard exudates were obtained. Then, the SVM classifer was established with the optimal subset of features which were selected by logistic regression and judgments of these candidate regions.Finally,hard exudates were automatically detected in 65 fundus images. Results Average sensitivity of 96.47% and average positive predict value of 90.13% were achieved with a lesion-based criterion. The sensitivity,specificity and accuracy were 100%,95% and 98.46%, respectively, with an image-based criterion. Average time in processing an image was 4.56 s. Conclusions The method based on IFCM and SVM with higher recognition rate can efficiently detect hard exudates in fundus images.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com