设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于Bandlet的压缩感知算法及其在智能乳腺全容积超声系统中的应用

The compressive sensing algorithm based on Bandlet and its applicationin the intelligent breast volume ultrasonography system

作者: 李斌  李德来  张琼 
单位:汕头市超声仪器研究所有限公司(广东汕头515041)
关键词: 压缩感知;稀疏表示;Bandlet变换;超声成像;乳腺 
分类号:R318.04
出版年·卷·期(页码):2017·36·4(343-347)
摘要:

目的 在智能乳腺全容积超声系统中需扫描很多个切面同时进行成像和保存,数据量庞大。为此,本文提出基于Bandlet变换的压缩感知方法并应用于该系统,以降低存储和传输的数据量。方法 首先利用超声图像的Bandlet变换域能够根据图像的“几何正则性”来自适应改变得到稀疏表示的特点,将所得图像进行Bandlet变换。然后选择与Bandlet基矩阵不相干的随机测量来降低图像压缩的数据量,之后利用匹配追踪算法由压缩数据重建超声图像。最后以智能乳腺全容积超声系统的图像数据为例进行压缩效率和重建有效性的验证。结果 压缩后的数据大小为原数据的30%,降低了传输和存储的数据量,同时可得到高质量的重建图像。结论 基于Bandlet的压缩感知算法可降低智能乳腺全容积超声系统图像的传输带宽和数据量,并保证了图像重建的质量,适用于智能乳腺全容积超声系统。

Objective In intelligent breast volume ultrasonography system,many sections are required to be scanned for imaging and storage simultaneously,which produces an enormous amount of data.In this paper,a compressive sensing algorithm based on Bandlet is proposed and applied to intelligent breast volume ultrasonography system to reduce the amount of data in image transmission and storge.Methods Firstly,the ultrasound image was transformed by Bandlet to obtain better sparse representation.Then random measurement matrix incoherent with matrix of Bandlet basis was used to reduce the data amount,and matching pursuit algorithm was used for reconstruction.Finally,the vicinity of the proposed compression and reconstruction method was tested in intelligent breast volume ultrasonography system.Results The amount of the compressed data was only 30% of the raw data which reduced the amount of data in image transmission and storge.And the high quality image was achieved by using the reconstruction method.Conclusions The algorithm can reduce the amount of data in image transmission and storge with high reconstruction quality.

参考文献:

[1]Emmanuel Candès,Michael Wakin.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.

[2]Candès E,Tao T.Decoding by linear programming[J].IEEE Transactions on Information Theory,2005,51(12):4203-4215.

[3]Baraniuk R,Davenport M,Devore R,et al.A simple proof of the restricted isometry property for random matrices[J].Constructive Approximation,2008,28(3):253-263.

[4] Candès E,Tao T.Near optimal signal recovery fromrandom projections:universal encoding strategies?[J].IEEE Trans on Information Theory,2006,52(12):5406-5425.

[5]Candès E,Romberg J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.

[6]Baraniuk RG,Davenport M,Devore R,et al.The Johnson-Lindenstrauss lemma meets compressed sensing[J].IEEE Trans on Information Theory,2006,52(3):1289-1306.

[7]Pennec EL,Mallat S. Sparse geometric image representations with bandelets[J].IEEE Trans on Image Processing,2005,14(4):423-438.

[8]Rajeswari R,Rajesh R.Type-2 fuzzy thresholded bandlet transform for image compression[J].Procedia Engineering,2012,38:385-390.

[9]Gurevich S,Hadani R.Incoherent dictionaries and the statistical restricted isometry property[J].Eprint Arxiv,2008,abs/0809:1687.


服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com