设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
数字PCR中微滴生成尺寸与频率的数值模拟

Numerical simulation of the size and frequency ofmicro-droplets in digital PCR

作者: 张森  冯继宏  张弘  高辛未 
单位:北京工业大学生命科学与生物工程学院(北京100124)
关键词: 数字PCR;微流体;两相流;微液滴;流动聚焦 
分类号:R318.04
出版年·卷·期(页码):2017·36·4(361-365)
摘要:

目的 微滴合成是数字PCR中的关键技术,但其中两相流速与生成微滴大小和频率的关系尚不明确。本文采用VOF模型研究数字PCR系统中生成微滴的尺寸、频率与两相流速的关系。方法 将氟化油作为连续相,反应液(水)作为离散相,通过求解整体的动量方程和各自相的体积分数连续方程来实现相与相间的界面追踪,模拟出微通道内两相的流动情况,对不同两相流速下微通道内微滴生成的尺寸和频率进行研究。结果 在不同的流速条件下,微通道内会出现弹状流、滴状流和管状流3种流型。并且,对于弹状流和滴状流,随着连续相流速的增加,微液滴的生成尺寸减小,生成频率增加;而随着离散相流速的增加,微液滴的生成尺寸和频率都会增加。结论 在滴状流状态下,当连续相流速为0.048~0.064m/s,并且离散相流速为0.016~0.032m/s时,可高效生成数字PCR微滴。

Objective Micro-droplets formation is one of key technologies in the digital PCR.However,the relationship between the two-phase flow rate and the size and frequency of produced micro-droplets is undeveloped.In this paper,we simulate this relationship with the volume of fluid (VOF) model in the digital PCR system.Methods We used fluorinated oil as the continuous phase and reactants (water) as the disperse phase.Through solving the momentum equation of the whole system and volume fraction equation,we monitored the profiles of produced droplets and simulated the two-phase flow in the crossing micro-channel.We mainly focused on the size and frequency of the produced droplets.Results Under different two-phase flow rates,there were three typical flow patterns:bubbly,slug and annular flow.Moreover,with the increasing of the continuous flow rate of slug flow and bubbly flow,the droplet size decreased and the frequency increased.And as the dispersed flow rate rising up,the size and the frequency of the produced micro-droplets increased accordingly.Conclusions Under slug flow,we can effectively produce micro-droplets for digital PCR when the continuous flow rate is at 0.048m/s to 0.064m/s and dispersed flow rate is at 0.016m/s to 0.032m/s,respectively.

参考文献:

[1]Keer JT,Birch L.Essentials of Nucleic Acid Analysis:A Robust Approach[M].Cambridge:RSC Publishing,2008.

[2]Sedlak RH,Jerome KR.Viral diagnostics in the era of digital polymerase chain reaction[J].Diagnostic Microbiology & Infectious Disease,2013,75(1):1-4.

[3]Guo MT,Rotem A,Heyman JA,et al.Droplet microfluidics for high-throughput biological assays[J].Lab on a Chip,2012,12(12):2146-2155.

[4]Seemann R,Brinkmann M,Pfohl T,et al.Droplet based microfluidics[J].Reports on Progress in Physics,2011,75(1):016601.

[5]Umbanhowar PB,Prasad V,Weitz DA.Monodisperse emulsion generation via drop break off in a coflowing stream[J].Langmuir,2000,16(2):347-351.

[6]Anna SL,Bontoux N,Stone HA.Formation of dispersions using “flow focusing” in microchannels[J].Applied Physics Letters,2003,82(3):364-366.

[7]Takeuchi S,Garstecki P,Weibel DB,et al.An axisymmetric flow-focusing microfluidic device[J].Advanced Materials,2005,17(8):1067-1072.

[8]Yobas L,Martens S,Ong WL,et al.High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets[J].Lab on a Chip,2006,6(8):1073-1079.

[9]Li W,Young EWK,Seo M,et al.Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators[J].Soft Matter,2008,4(2):258-262.

[10]Cubaud T,Mason TG.Capillary threads and viscous droplets in square microchannels[J].Physics of Fluids (1994-present),2008,20(5):053302.

[11]Jose BM,Cubaud T.Droplet arrangement and coalescence in diverging/converging microchannels[J].Microfluidics and Nanofluidics,2012,12(5):687-696.

[12]Li Z,Kang J,Park JH,et al.Numerical simulation of the droplet formation in a cross-junction microchannel using the Lattice Boltzmann Method[J].Journal of Mechanical Science and Technology,2007,21(1):162-173.

[13]Sur A,Yang L,Liu D.Experimental and numerical investigation of two-phase patterns in a cross-junction microfluidic chip[C]//ASME 2010 8th International Conference on Nanochannels,Microchannels,and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting.Montreal:American Society of Mechanical Engineers,2010,1771-1777.

[14]Zhang HB,Liu JP,Lai HX.Numerical simulation of jetting instability in flow focusing microfluidics[J].Key Engineering Materials,2014,609-610:630-636.

[15]Basova EY,Foret F.Droplet microfluidics in (bio)chemical analysis[J].Analyst,2015,140(1):22-38.

[16]Vladisavljevic GT,Kobayashi I,Nakajima M.Production of uniform droplets using membrane,microchannel and microfluidic emulsification devices[J].Microfluidics and Nanofluidics,2012,13(1):151-178.

[17]Larson JW,Zhong Q,Link DR.Digital analyte analysis:US,US8535889[P].2013-9-17[2016-5-10].

[18]王佳男.微通道中液液两相流动与混合过程的数值模拟[D].杭州:浙江大学,2013.


服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com