设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于领域关联兴趣模型的个性化文献推荐方法

A personalized literature recommendation method based on the domain related interest model

作者: 盛文瑾  谭绍峰  赵晓轩  陈建辉  闫健卓 
单位:北京工业大学信息学部(北京 100124)<p>首都医科大学附属北京友谊医院平谷医院(北京 101200)</p>
关键词: 文献推荐;  认知科学;  时间遗忘曲线;  激活扩散理论;  用户兴趣 
分类号:R318
出版年·卷·期(页码):2018·37·4(392-397)
摘要:

目的 文献资料是目前最重要的科研知识源, 但爆炸式增长的科技文献所带来的信息过载, 使得科研人员难以快速找到真正需要的文献。这在目前得到普遍关注的认知科学领域尤为严重。为解决这一问题, 提出一种基于领域关联兴趣模型的个性化文献推荐方法。方法 基于对研究人员短期兴趣变迁的观察, 引入兴趣遗忘曲线进行用户建模, 并改进激活扩散模型, 利用兴趣间潜在的领域语义关系解决用户兴趣模型存在的数据稀疏问题, 最后通过对比基于用户兴趣模型推荐方法与基于领域关联兴趣模型推荐方法的精确度与平均准确率对方法的有效性进行评估。结果 采用Pub Med文献作为实验数据, 从精确度来看, fMRIinductionnormal分别获得0.600.800.550;从平均准确度来看, 对于induction概念, 此方法能够提供更高的精确度与召回率。结论 本方法能够有效捕捉用户研究兴趣及其变迁, 进而为用户推荐内容上更贴近其研究兴趣的科技文献。

Objective At present, literatures are the most important knowledge source of scientific resources. However, in the face of the information overload caused by the explosive growth of scientific literatures, it is difficult for researchers to find the literatures quickly. This is particularly acute in the field of cognitive science. In order to solve this problem, this paper proposes a personalized literature recommendation method based on the domain related interest model. Methods This method is based on the observation about the researcher's short-term interest migration and adopts a time-forgotten curve for modeling user interest. In order to solve the problem of data sparsity, this paper improves the spread activation model to find potential domain semantic relations among interests. Results We use the Pub Med literature as our experimental data. From the point of view of accuracy, f MRI, induction and normal can acquire 0.60, 0.80 and 0.550, respectively. From the point of view of average accuracy, this method can provide higher accuracy and recall rate for the concept of induction. Conclusions The proposed method can effectively capture user interests and recommend literature that more relevant to users' research interests.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com