设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于卷积递归神经网络的血压测量模型

Blood pressure measurement model based on convolutional recurrent neural network

作者: 张佳骕  顾林跃  姜少燕 
单位:<span style="font-family:宋体">浙江好络维医疗技术有限公司(杭州</span> 310012<span style="font-family:宋体">)</span><p><span style="font-family:宋体">青岛大学医学院附属心血管病医院(山东青岛</span> 266071<span style="font-family:宋体">)</span></p>
关键词: 血压测量;  脉搏波;  卷积神经网络;  波形特征提取;  递归神经网络 
分类号:R318.04
出版年·卷·期(页码):2018·37·5(494-501)
摘要:

目的 提出一种新型卷积递归神经网络血压模型 (convolutional recurrent neural networkblood pressure, CRNN-BP) , 解决使用脉搏波波形进行血压测量模型中存在的特征点难以提取和鲁棒性较低的问题, 提高血压模型普适性和精度。方法 该模型首先使用卷积网络层自动提取脉搏波的波形特征;其次使用递归网络层依据连续心动周期血压变化关系对波形特征进行校正;最后使用全连接网络层预测出当前的血压值。结果 使用MIMIC数据集中人体真实生理信息对模型进行验证, 收缩压和舒张压的平均绝对误差分别为2.71 mm Hg1.41 mm Hg。模型精度相比于未使用递归网络层的模型CNN-BP和使用全部脉搏波波形点的传统血压回归模型更有优势, 且符合AAMIBHS标准。结论 CRNN-BP有效地提取了脉搏波的波形特征, 并提升了模型的精度和鲁棒性。

Objective In order to solve the problem of difficult extraction of feature points and low robustness in the model of blood pressure measurement with pulse waveform, and improve the universality and accuracy of the blood pressure model, we present a new convolutional recurrent neural network-blood pressure (CRNN-BP) . Methods Firstly, we use convolutional network layer to extract the waveform features of the pulse wave automatically; Secondly, recurrent network layer is used to correct the features of waveform according to the relationship of the change of the blood pressure in the continuous cardiac cycle; Finally, full connected layer is used to predict the current blood pressure value. Results The model is validated using real human physiological information in the MIMIC data set. The mean absolute error (MAE) of systolic and diastolic blood pressure are 2.71 mm Hg and 1.41 mm Hg, respectively. Other than the accuracy of CRNN-BP is consistent with the standards of AAMI and BHS, it's superior to CNN-BP which does not use the recurrent network layer and traditional blood pressure regression models which use all pulse wave shape points.Conclusions CRNN-BP effectively extracts the waveform features of pulse wave and improves the accuracy and robustness of the model.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com