设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
肿瘤热疗无损测温方法的研究进展

Advances in non-invasive temperature measurement methods for hyperthermia

作者: 嵇敏洁  印佳  杨悦  韩佳薇  吴小玲 
单位:南京医科大学生物医学工程与信息学院(南京 211166)
关键词: 肿瘤热疗;  温度敏感性;  无损测温;  精确性;  热剂量 
分类号:R318.04
出版年·卷·期(页码):2019·38·1(96-101)
摘要:

肿瘤热疗(hyperthermia)是利用肿瘤组织对温度敏感性高于正常组织的性质,即人体正常细胞在42.5~43℃下不会受到损伤,但大部分肿瘤细胞在该温度下会被诱导进入凋亡过程。临床上应用超声、微波或红外等作为加热源,加热并杀死肿瘤组织而使得正常组织基本不受损伤。但是对于如何精确测量肿瘤热疗的温度从而控制热疗剂量仍然是一个难题。本文综述了目前肿瘤热疗过程中电阻抗断层成像(ectrical impedance tomograph,EIT)测温、红外热图引导技术、微波辐射测温法、超声无损测温、磁共振成像测温(magnetic resonance imaging,MRI)等无损测温方法及其研究现状,展望了如何有效精确测量肿瘤热疗时的温度,为控制肿瘤热疗的热剂量提供参考,以期在不伤害正常组织的前提下,使肿瘤组织产生不可逆的损伤。

Hyperthermia is the use of tumor tissue that is more sensitive to temperature than normal tissues . Human normal cells can tolerate 42-43°C for long periods of time without damage, while most tumor cells will be induced into the apoptotic process at 42°C. Ultrasound, microwave or infrared is used as the heating source in clinical practice to heat and kill tumor tissue, so that normal tissue was not damaged. However, it is still difficult to accurately measure the temperature of tumor hyperthermia and control the dose of hyperthermia. This article reviews the methods and research status of non-invasive temperature measurement in tumor hyperthermia, such as electrical impedance tomography (EIT) temperature measurement, infrared thermal image, microwave radiation temperature measurement, ultrasonic non-destructive temperature measurement, magnetic resonance imaging (MRI), etc, forecasts how the temperature measurement method can effectively and accurately measure the temperature during hyperthermia, and provide reference for controlling the thermal dose of tumor hyperthermia, so as to cause irreversible damage to tumor tissue without harming normal tissues.

参考文献:

 [1] Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia[J]. Critical Reviews in Oncology Hematology, 2002,43(1):33-56.

 [2] Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology.[J]. Seminars in Radiation Oncology, 2004,14(3):198-206.

 [3] Ressel A, Weiss C, Feyerabend T. Tumor oxygenation after radiotherapy, chemotherapy, and/or hyperthermia predicts tumor free survival.[J]. International Journal of Radiation Oncology, Biology, Physics, 2001,49(4):1119-1125.

 [4] Henderson R P, Webster J G. An impedance camera for spatially specific measurements of the thorax.[J]. IEEE transactions on bio-medical engineering, 1978,25(3):250-254.

 [5] 蔡华, 尤富生, 史学涛, 等. 离体猪肝组织温度的电阻抗成像监测研究[J]. 医疗卫生装备, 2012,33(2):5-7.

Cai H, You FS, Shi XT, et al. Monitoring of electricalimpedance tomography with temperature in fresh pig liver in vitro[J]. Journal of Medical and Health Equipment, 2012,33(2):5-7.

[6] Guo GP, Su HD, Ding HP, et al. Noninvasive temperature monitoring for high intensity focused ultrasound therapy based on  electrical impedance tomography[J]. Acta Physica Sinica, 2017, 66:12-16..

[7] 蔡华. 肝脏组织的电阻率-温度特性及电阻抗成像监测的研究[D]. 西安:第四军医大学, 2011.

Cai H. Research on Measurement the resistivity-temperature properties of liver tissue and monitoring of electrical impedance tomography[D]. Xian:Fourth Military Medical Unversity, 2011.

 [8] 张城. 红外热成像技术原理及应用前景[J]. 数字通信世界, 2017,(2):126-127

Zhang C. Principle and Application Prospect of Infrared Thermal Imaging Technology[J]. Digital Communication World, 2017,(2):126-127

[9] Rodrigues HF, Capistarano G, Mello FM, et al. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography[J]. Physics in Medicine & Biology, 2017,62(10):4062-4082.

[10] 刘静, 邓中山. 肿瘤冷冻治疗与高温热疗中的红外热图引导技术[C]// 中国仪器仪表学会.中国仪器仪表学会医疗仪器分会第四次全国会员代表大会暨2009年学术年会论文集.北京:中国仪器仪表学会, 2009.

[11] Rodrigues HF, Mello FM, Branquinho LC, et al. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.[J]. International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology North American Hyperthermia Group, 2013, 29(8):752-767.

[12]  Jiao LZ, Dong DM, Zhao XD, et al. Compensation method for the influence of angle of view on animal temperature measurement using thermal imaging camera combined with depth image.[J]. Journal of Thermal Biology, 2016, 62(Pt A):15-19.

[13] Ma M,Zhang Y,Gu N. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: phantom and numerical studies[J].Journal of Thermal Biology,2018,76:89-94

[14] Enander B, Larson G. Microwave radiometric measurements of the temperatureinside a body[J]. Electronics Letters.,1974, 10(15): 317.

[15] 皮钊逢. 用于人体温度测量微波辐射计天线的研究[D]. 武汉:华中科技大学,2015.

Pi ZF. [D].Research on microwave radiometer antenna for human body temperature measurement Wuhan[D]:Huazhong University of Science and Technology, 2015.

[16] 何帆. 微波无损测量人体内部温度的反演方法研究[D]. 武汉:华中科技大学, 2015.

He Fan. Study of Nondestructive retrieval method for the measurement of human internal temperature by microwave[D]. Wuhan:Huazhong University of Science and Technology, 2015.

[17]  Levick A, Land D, Hand J. Validation of microwave radiometry for measuring the internal temperature profile of human tissue[J]. Measurement Science & Technology, 2011, 22(22):065801.

[18] Momenroodaki P, Haines W, Fromandi M, et al. Noninvasive internal body temperature tracking with near-field microwave radiometry[J]. IEEE Transactions on Microwave Theory & Techniques, 2017,65 (99):1-11.

[19] Sehgal C M, Brown G M, Bahn R C, et al. Measurement and use of acoustic nonlinearity and sound speed to estimate composition of excised livers[J]. Ultrasound in Medicine & Biology, 1986, 12(11):865-874.

[20]  Jovanovic I, Hormati A, Littrup P, et al. Temperature monitoring during tissue freezing using ultrasound speed measurements[C/OL]. 2017-01-23.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.2803&rep=rep1&type=pdf.

[21] 熊六林, 钱祖文, 于晋生,等. 超声反演法无创测温实验研究[J]. 中国超声医学杂志, 2008, 24(1):17-19.

Xiong Liulin,Qian Zuwen,Yu Jinsheng,et a1.Non-invasive temperature measurement using acoustic—invasion method:

experimental study[J].Chinese Journal of Ultrasound Medical, 2008, 24(1):17一19

[22] Atri M, Gertner MR, Haider MA, et al. Contrast-enhanced ultrasonography for real-time monitoring of interstitial laser thermal therapy in the focal treatment of prostate cancer.[J]. Canadian Urological Association Journal, 2009, 3(2):125-130.

[23] Engrand C, Laux D, Ferrandis J Y, et al. Velocimetric ultrasound thermometry applied to myocardium protection monitoring[J]. Ultrasonics, 2018, 87: 1-6.

[24] Ebbini ES, Simon C, Liu D. Real-time ultrasound thermography and thermometry (life sciences)[J]. IEEE Signal Processing Magazine, 2018, 35(2):166-174.

[25]  Iseki Y, Anan D, Saito T, et al. Non-Invasive Measurement of Temperature Distributions During Hyperthermia Treatments using Ultrasound B-mode Images[J]. Thermal Medicine, 2016, 32(4):17-30.

[26] 盛磊, 周著黄, 吴水才, 等. 热消融组织B超图像纹理特征参数温度相关性[J]. 北京工业大学学报, 2013(8):1275-1280.

Sheng L,Zhou ZH,Wu SC, et al. Correlations between B-modeultrasound imag etexture features and tissue temperature in hyperthermia[J]. Journal of Beijing University of Technology, 2013(8):1275-1280.

[27]  Yang C, Zhu H, Wu S, et al. Correlations between B-mode ultrasonic image texture features and tissue temperature in microwave ablation [J]. Journal of Ultrasound in Medicine, 2010, 29(12): 1787-1799.

[28]  Lai CY, Kruse DE, Caskey CF, et al. Noninvasive thermometry assisted by a dual function ultrasound transducer for mild hyperthermia[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2010, 57(12):2671.

[29] 肖达, 王润民, 邹孝,等. 基于Gabor变换和灰度梯度共生矩阵的超声无损测温研究[J]. 传感技术学报, 2017, 30(11):1684-1688.

Xiao D, Wang RM, Zou X, et al. A noninvasive temperature measurement based on gabor transform and gray level gradient co-occurrence matrix using ultrasound[J]. Chinese Journal of Sensors and Actuators, 2017, 30(11):1684-1688. 

[30] Pinker K , Moy L , Sutton EJ , et al. Diffusion-weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone parameter: comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging[J]. Investigative Radiology, 2018, 53.

[31] Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature mapping using water proton chemical shift.[J]. Magnetic Resonance in Medicine, 2010,34(6):814-823.

[32] De PJ, De WC, De DY, et al. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle[J]. Magnetic Resonance in Medicine, 2010,33(1):74-81.

[33] Dan B, Basser PJ. Towards clinically feasible relaxation-diffusion correlation MRI using MADCO[J]. Microporous and Mesoporous Materials, 2018, 269(93-96):1387-1811.

[34] Hue YK, Guimaraes AR, Cohen O, et al. Magnetic Resonance Mediated Radiofrequency Ablation.[J]. IEEE Transactions on Medical Imaging, 2018, 37(2) :417-427

[35] Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy[J]. Journal of Magnetic Resonance Imaging, 2000,12(4):525-533.

[36] Jonathan SV, Grissom WA. Volumetric MRI thermometry using a three‐dimensional stack‐of‐stars echo‐planar imaging pulse sequence[J]. Magnetic Resonance in Medicine, 2018, 79(4) :2003-2013.

[37] Bever J T D, Odeen H, Hofstetter L W, et al. Simultaneous MR thermometry and acoustic radiation force imaging using interleaved acquisition[J]. Magnetic Resonance in Medicine, 2018,79(3) :1515-1524.

[38] 刘力坤, 敖碧凤, 丁文金,等. 磁性纳米粒子的性状及其在肿瘤磁靶向热疗中的应用与挑战[J]. 国际肿瘤学杂志, 2015, 42(9):685.

Liu LK,Ao BF,Ding WJ, et al.Properties of magnetic nanoparticles and its appficafion in tumor magnetic targeting hyperthermia and challenges[J]. Journal of International Oncology, 2015, 42(9):685.

[39] Weaver JB, Rauwerdink AM, Hansen EW. Magnetic nanoparticle temperature estimation.[J]. Medical Physics, 2009, 36(5):1822.

[40] Rauwerdink AM, Hansen EW, Weaver JB. Nanoparticle temperature estimation in combined ac and dc magnetic fields[J]. Physics in Medicine and Biology, 2009,54(19):L51-L55.

[41] Reeves DB, Weaver JB. Simulations of magnetic nanoparticle Brownian motion[J]. Journal of Applied Physics, 2012,112(12):124311.

[42] Boroon MP, Ayani MB, Bazaz SR. Estimation of the optimum number and location of nanoparticle injections and the specific loss power for ideal hyperthermia[J]. Journal of Thermal Biology, 2018, 72:127.

[43] 张亚萍, 李康, 张秀敏. 磁流体肿瘤热疗中超声无损测温技术的研究进展[J]. 北京生物医学工程, 2016, 35(3):308-313.

Zhang Yaping,Li Kang,Zhang Xiumin. Advances in noninvasive ultrasound monitoring of magnetic fluid hyperthermia for tumors[J]. Beijing Biomedical Engineering, 2016, 35(3):308-313

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com