[1] Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia[J]. Critical Reviews in Oncology Hematology, 2002,43(1):33-56. [2] Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology.[J]. Seminars in Radiation Oncology, 2004,14(3):198-206. [3] Ressel A, Weiss C, Feyerabend T. Tumor oxygenation after radiotherapy, chemotherapy, and/or hyperthermia predicts tumor free survival.[J]. International Journal of Radiation Oncology, Biology, Physics, 2001,49(4):1119-1125. [4] Henderson R P, Webster J G. An impedance camera for spatially specific measurements of the thorax.[J]. IEEE transactions on bio-medical engineering, 1978,25(3):250-254. [5] 蔡华, 尤富生, 史学涛, 等. 离体猪肝组织温度的电阻抗成像监测研究[J]. 医疗卫生装备, 2012,33(2):5-7. Cai H, You FS, Shi XT, et al. Monitoring of electricalimpedance tomography with temperature in fresh pig liver in vitro[J]. Journal of Medical and Health Equipment, 2012,33(2):5-7. [6] Guo GP, Su HD, Ding HP, et al. Noninvasive temperature monitoring for high intensity focused ultrasound therapy based on electrical impedance tomography[J]. Acta Physica Sinica, 2017, 66:12-16.. [7] 蔡华. 肝脏组织的电阻率-温度特性及电阻抗成像监测的研究[D]. 西安:第四军医大学, 2011. Cai H. Research on Measurement the resistivity-temperature properties of liver tissue and monitoring of electrical impedance tomography[D]. Xian:Fourth Military Medical Unversity, 2011. [8] 张城. 红外热成像技术原理及应用前景[J]. 数字通信世界, 2017,(2):126-127 Zhang C. Principle and Application Prospect of Infrared Thermal Imaging Technology[J]. Digital Communication World, 2017,(2):126-127 [9] Rodrigues HF, Capistarano G, Mello FM, et al. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography[J]. Physics in Medicine & Biology, 2017,62(10):4062-4082. [10] 刘静, 邓中山. 肿瘤冷冻治疗与高温热疗中的红外热图引导技术[C]// 中国仪器仪表学会.中国仪器仪表学会医疗仪器分会第四次全国会员代表大会暨2009年学术年会论文集.北京:中国仪器仪表学会, 2009. [11] Rodrigues HF, Mello FM, Branquinho LC, et al. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.[J]. International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology North American Hyperthermia Group, 2013, 29(8):752-767. [12] Jiao LZ, Dong DM, Zhao XD, et al. Compensation method for the influence of angle of view on animal temperature measurement using thermal imaging camera combined with depth image.[J]. Journal of Thermal Biology, 2016, 62(Pt A):15-19. [13] Ma M,Zhang Y,Gu N. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: phantom and numerical studies[J].Journal of Thermal Biology,2018,76:89-94 [14] Enander B, Larson G. Microwave radiometric measurements of the temperatureinside a body[J]. Electronics Letters.,1974, 10(15): 317. [15] 皮钊逢. 用于人体温度测量微波辐射计天线的研究[D]. 武汉:华中科技大学,2015. Pi ZF. [D].Research on microwave radiometer antenna for human body temperature measurement Wuhan[D]:Huazhong University of Science and Technology, 2015. [16] 何帆. 微波无损测量人体内部温度的反演方法研究[D]. 武汉:华中科技大学, 2015. He Fan. Study of Nondestructive retrieval method for the measurement of human internal temperature by microwave[D]. Wuhan:Huazhong University of Science and Technology, 2015. [17] Levick A, Land D, Hand J. Validation of microwave radiometry for measuring the internal temperature profile of human tissue[J]. Measurement Science & Technology, 2011, 22(22):065801. [18] Momenroodaki P, Haines W, Fromandi M, et al. Noninvasive internal body temperature tracking with near-field microwave radiometry[J]. IEEE Transactions on Microwave Theory & Techniques, 2017,65 (99):1-11. [19] Sehgal C M, Brown G M, Bahn R C, et al. Measurement and use of acoustic nonlinearity and sound speed to estimate composition of excised livers[J]. Ultrasound in Medicine & Biology, 1986, 12(11):865-874. [20] Jovanovic I, Hormati A, Littrup P, et al. Temperature monitoring during tissue freezing using ultrasound speed measurements[C/OL]. 2017-01-23.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.2803&rep=rep1&type=pdf. [21] 熊六林, 钱祖文, 于晋生,等. 超声反演法无创测温实验研究[J]. 中国超声医学杂志, 2008, 24(1):17-19. Xiong Liulin,Qian Zuwen,Yu Jinsheng,et a1.Non-invasive temperature measurement using acoustic—invasion method: experimental study[J].Chinese Journal of Ultrasound Medical, 2008, 24(1):17一19 [22] Atri M, Gertner MR, Haider MA, et al. Contrast-enhanced ultrasonography for real-time monitoring of interstitial laser thermal therapy in the focal treatment of prostate cancer.[J]. Canadian Urological Association Journal, 2009, 3(2):125-130. [23] Engrand C, Laux D, Ferrandis J Y, et al. Velocimetric ultrasound thermometry applied to myocardium protection monitoring[J]. Ultrasonics, 2018, 87: 1-6. [24] Ebbini ES, Simon C, Liu D. Real-time ultrasound thermography and thermometry (life sciences)[J]. IEEE Signal Processing Magazine, 2018, 35(2):166-174. [25] Iseki Y, Anan D, Saito T, et al. Non-Invasive Measurement of Temperature Distributions During Hyperthermia Treatments using Ultrasound B-mode Images[J]. Thermal Medicine, 2016, 32(4):17-30. [26] 盛磊, 周著黄, 吴水才, 等. 热消融组织B超图像纹理特征参数温度相关性[J]. 北京工业大学学报, 2013(8):1275-1280. Sheng L,Zhou ZH,Wu SC, et al. Correlations between B-modeultrasound imag etexture features and tissue temperature in hyperthermia[J]. Journal of Beijing University of Technology, 2013(8):1275-1280. [27] Yang C, Zhu H, Wu S, et al. Correlations between B-mode ultrasonic image texture features and tissue temperature in microwave ablation [J]. Journal of Ultrasound in Medicine, 2010, 29(12): 1787-1799. [28] Lai CY, Kruse DE, Caskey CF, et al. Noninvasive thermometry assisted by a dual function ultrasound transducer for mild hyperthermia[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2010, 57(12):2671. [29] 肖达, 王润民, 邹孝,等. 基于Gabor变换和灰度梯度共生矩阵的超声无损测温研究[J]. 传感技术学报, 2017, 30(11):1684-1688. Xiao D, Wang RM, Zou X, et al. A noninvasive temperature measurement based on gabor transform and gray level gradient co-occurrence matrix using ultrasound[J]. Chinese Journal of Sensors and Actuators, 2017, 30(11):1684-1688. [30] Pinker K , Moy L , Sutton EJ , et al. Diffusion-weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone parameter: comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging[J]. Investigative Radiology, 2018, 53. [31] Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature mapping using water proton chemical shift.[J]. Magnetic Resonance in Medicine, 2010,34(6):814-823. [32] De PJ, De WC, De DY, et al. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle[J]. Magnetic Resonance in Medicine, 2010,33(1):74-81. [33] Dan B, Basser PJ. Towards clinically feasible relaxation-diffusion correlation MRI using MADCO[J]. Microporous and Mesoporous Materials, 2018, 269(93-96):1387-1811. [34] Hue YK, Guimaraes AR, Cohen O, et al. Magnetic Resonance Mediated Radiofrequency Ablation.[J]. IEEE Transactions on Medical Imaging, 2018, 37(2) :417-427 [35] Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy[J]. Journal of Magnetic Resonance Imaging, 2000,12(4):525-533. [36] Jonathan SV, Grissom WA. Volumetric MRI thermometry using a three‐dimensional stack‐of‐stars echo‐planar imaging pulse sequence[J]. Magnetic Resonance in Medicine, 2018, 79(4) :2003-2013. [37] Bever J T D, Odeen H, Hofstetter L W, et al. Simultaneous MR thermometry and acoustic radiation force imaging using interleaved acquisition[J]. Magnetic Resonance in Medicine, 2018,79(3) :1515-1524. [38] 刘力坤, 敖碧凤, 丁文金,等. 磁性纳米粒子的性状及其在肿瘤磁靶向热疗中的应用与挑战[J]. 国际肿瘤学杂志, 2015, 42(9):685. Liu LK,Ao BF,Ding WJ, et al.Properties of magnetic nanoparticles and its appficafion in tumor magnetic targeting hyperthermia and challenges[J]. Journal of International Oncology, 2015, 42(9):685. [39] Weaver JB, Rauwerdink AM, Hansen EW. Magnetic nanoparticle temperature estimation.[J]. Medical Physics, 2009, 36(5):1822. [40] Rauwerdink AM, Hansen EW, Weaver JB. Nanoparticle temperature estimation in combined ac and dc magnetic fields[J]. Physics in Medicine and Biology, 2009,54(19):L51-L55. [41] Reeves DB, Weaver JB. Simulations of magnetic nanoparticle Brownian motion[J]. Journal of Applied Physics, 2012,112(12):124311. [42] Boroon MP, Ayani MB, Bazaz SR. Estimation of the optimum number and location of nanoparticle injections and the specific loss power for ideal hyperthermia[J]. Journal of Thermal Biology, 2018, 72:127. [43] 张亚萍, 李康, 张秀敏. 磁流体肿瘤热疗中超声无损测温技术的研究进展[J]. 北京生物医学工程, 2016, 35(3):308-313. Zhang Yaping,Li Kang,Zhang Xiumin. Advances in noninvasive ultrasound monitoring of magnetic fluid hyperthermia for tumors[J]. Beijing Biomedical Engineering, 2016, 35(3):308-313
|