[1] Milton J, Small SL, Solodkin A. Imaging motor imagery: methodological issues related to expertise[J]. Methods, 2008, 45(4):336-341. [2] Holmes P, Calmels C. A neuroscientific review of imagery and observation use in sport[J]. Journal of Motor Behavior, 2010, 40(5):433-445. [3] 刘铁军, 徐鹏, 余茜,等. 运动想象的脑机制及其在运动功能康复中应用的研究进展[J].生物化学与生物物理进展, 2011, 38( 4):299-304. Liu TJ, Xu P,Yu Q, et al. The research and progress in the mechanism of motor imagery and its application in motor rehabilitation[J]. Progress in Biochemistry and Biophysics, 2011,38(4):299-304. [4] Cona F, Zavaglia M, Astolfi L, et al. Changes in EEG power spectral density and cortical connectivity in healthy and tetraplegic patients during a motor imagery task[J]. Computational Intelligence & Neuroscience, 2009:279515. [5] 施锦河, 沈继忠, 王攀. 四类运动想象脑电信号特征提取与分类算法[J]. 浙江大学学报(工学版), 2012, 46(2):338-344. Shi JH, Shen JZ, Wang P. Feature extraction and classification of four-class motor imagery EEG data[J]. Journal of Zhejiang University (Engineering Science), 2012,46(2):338-344. [6] Pfurtscheller G. Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest[J]. Electroencephalography & Clinical Neurophysiology, 1992, 83(1):62-69. [7] Gong A, Liu J, Chen S, et al. Time–frequency cross mutual information analysis of the brain functional networks underlying multiclass motor imagery[J]. Journal of Motor Behavior, 2017,50(3):254-267. [8] Ghosh P, Mazumder A, Bhattacharyya S, et al. Functional connectivity analysis of motor imagery EEG signal for brain-computer interfacing application[C]//2015 7th International IEEE/EMBS Conference on Neural Engineering. Montpellier, France: IEEE Press, 2015:210-213. [9] Filho CAS, Attux R, Castellano G. Can graph metrics be used for EEG-BCIs based on hand motor imagery?[J]. Biomedical Signal Processing and Control, 2018, 40:359-365. [10] Gonuguntla V, Wang Y, Veluvolu KC. Event-related functional network identification: application to eeg classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(7):1284-1294. [11] Santamaria L, James C. Use of graph metrics to classify motor imagery based BCI[C]//2016 International Conference for Students on Applied Engineering. IEEE Press, 2017:469-474. [12] Shrestha B, Vlachos I, Adkinson J A, et al. Distinguishing Motor Imagery from Motor Movement Using Phase Locking Value and Eigenvector Centrality[C]//2016 32nd Southern Biomedical Engineering Conference. Shreveport, LA, USA: IEEE Press, 2016:107-108. [13] Quiroga RQ, Kraskov A, Kreuz T, et al. Performance of different synchronization measures in real data: a case study on electroencephalographic signals[J]. Physical Review E, 2002, 65(4):041903. [14] 汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012. Wang XF, Li X, Chen GR. Network science: an introduction[M]. Beijing: Higher Education Press, 2012. [15] Tang J, Scellato S, Musolesi M, et al. Small-world behavior in time-varying graphs[J]. Physical Review E: Statistical Nonlinear, and Soft Matter Physics, 2010, 81(5 Pt 2):055101. [16] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations[J]. NeuroImage, 2010, 52(3):1059-1069. [17] Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain[J]. Nonlinear Biomedical Physics, 2007, 1(1):3. [18] 佘青山, 昌凤玲, 范影乐,等. 基于邻接矩阵分解的脑电特征提取与分类方法[J]. 传感技术学报, 2012, 25(9):1204-1209. She QS, Chang FL,Fan YL, et al. Feature Extraction and Classification of EEG Based on Adjacent Matrix Decomposition[J]. Chinese Journal of Sensors and Actuator, 2012, 25(9):1204-1209.
|