设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于2D-3D配准的术中腓骨旋转不良检测方法

Method of detecting intraoperative fibular malrotation based on 2D-3D registration technology

作者: 李言  武王将  杨博鑫  丁云鹤  王巨鹏  孙振辉  杨智 
单位:首都医科大学 生物医学工程学院(北京 100069)<p>临床生物力学应用基础研究北京市重点实验室(北京 100069)</p><p>首都医科大学附属北京安贞医院介入诊疗科(北京 100029)</p><p>天津市西青医院骨科(天津 300380)</p><p>天津市天津医院骨科(天津 300211)</p>
关键词: 踝关节骨折;  腓骨旋转不良;  2D-3D配准;  优化算法;  医学图像手术导航 
分类号:R318.04
出版年·卷·期(页码):2019·38·1(52-58)
摘要:

目的 腓骨旋转不良是造成术后踝关节功能不全的主要原因之一。通常检测腓骨旋转不良的方法是对术中踝关节2D X射线影像做目视评估,但主观判断往往导致结果误差较大;目前公认的准确检测腓骨旋转不良的方法需借助术后3D CT数据,但会为患者引入较大的辐射量。为此,本文提出了一种基于2D-3D配准技术准确识别术中腓骨旋转不良的低剂量、低成本的精准复位腓骨的可行方法,即将术中拍摄的C臂图像和术前拍摄的CT数据配准。方法 本文利用模拟数据仿真了术中识别腓骨旋转不良的过程,以此验证所提方法的可行性。研究对象为单一腓骨CT数据,初始位置定义为参考位,然后借助Mimics软件对其做不同程度的旋转变换,生成12组腓骨旋转畸形测试位的CT数据,模拟术中腓骨的不同姿态,包括6组腓骨内旋和6组腓骨外旋。测试位腓骨术中C臂图像由投影仿真程序生成。通过将术中C臂图像和参考位CT数据做2D-3D配准来识别这12组测试位相对于参考位的旋转不良程度。得到的结果和金标准比对,从而评估2D-3D配准的准确性;其中,金标准为参考位和12组测试位的3D-3D配准结果。另外,因为与投影轴平行方向检测位移不敏感,故本文用两幅正交位投影的配准结果做补偿。结果 10次测试12组数据配准结果在绕x轴、y轴和z轴旋转的平均角度(及沿三个方向的平均位移)误差分别为1.19° (0.56 mm), 0.72° (0.84 mm) 和 0.81° (0.65 mm);标准差依次为0.43° (0.38 mm), 0.51° (0.47 mm)和0.58° (0.5 mm);最大误差分别是2.13° (1.76 mm)、2.74° (1.90 mm) 和 2.10° (2.16 mm)。结论 2D-3D配准方法可为临床腓骨复位提供精度更高的监控工具,其误差远小于目前10°旋转的目测误差。相比于术前CT做手术规划,术后CT做手术评估,本文方法借助术前CT和术中C臂图像不仅可达到准确评估的目的,而且可实现术中动态评估,故其辐射剂量更低,患者医疗成本更低,治疗更及时、更有效。

Objectives Distal fibular malrotation is one of the main reasons leading to poor functional outcomes in ankles. The general method of detecting fibular malrotation is to evaluate intraoperative 2D X-ray images based on surgeons’ experiences. This subjective judgment tends to bring bigger errors. Whereas, accurate estimation of fibular malrotation requires postoperative 3D CT scans. It will bring in extra radiational doses to patients. This paper proposes to better detect the intraoperative distal fibular malrotation using 2D-3D registration technology with low-doses and low-costs, which registers intraoperative fluoroscopies in 2D to the preoperative CT volume. Methods In order to verify the proposed method’s feasibility, we studied the procedure of identifying the fibular malrotation in intra-operation scenario using  simulation data. We took a cadaver fibula bone CT data as a research subject. Its initial position was defined as the reference position. From the CT data, 12 intraoperative volumetric datasets were simulated with internal rotation (IR) and external rotation (ER) gestures in Mimics? software.  2D C-arm images at 12 gestures were also simulated by forward projection. Fibular rotations at 12 gestures were estimated using the suggested 2D-3D registration method, the registration results’ accuracy was compared with gold standards. The gold standards were from the 3D-3D registration between the 3D simulation data and the reference 3D data. To minimize the large errors in insensitive axis, two orthogonal fluoroscopies were used in 2D-3D registration. Results The average registration errors of 10 tests in rotation angles (and translations) at 12 gestures in x-axis, y-axis and z-axis were 1.19° (0.56 mm), 0.72° (0.84 mm) and 0.81° (0.65 mm), respectively. The corresponding standard deviations were 0.43° (0.38 mm), 0.51° (0.47 mm) and 0.58° (0.50 mm). Overall, the maximum errors in cartesian coordinate system were 2.13° (1.76 mm), 2.74° (1.90 mm) and 2.10° (2.16 mm) respectively. Conclusions The proposed 2D-3D registration method opens a possibility to greatly improve the clinical outcomes for the fibular malrotation correction compared to visual evaluation accuracy of internal rotation errors less than 10° and external ones less than 5°. Compared with the usual procedure of using preoperative CT scans for surgical plan and postoperative CT scans for surgical evaluation, not only can the proposed method achieve the accurate evaluation and low dose purposes, but also intra-operative assessment. Therefore, our method is a low dose approach that can be more effective and save patient’s medical costs.

参考文献:

[1] Ward KA, Soames RW. Contact patterns at the tarsal joints[J]. Clinical Biomechanics, 1997, 12(7-8): 496-507.

[2] Wang X, Chang SM, Yu GR, et al. Clinical value of the Ottawa ankle rules for diagnosis of fractures in acute ankle injuries[J]. Plos One, 2013, 8(4): e63228.

[3] Ian W, Scott Y, Jill F. Emergency department evaluation and management of foot and ankle pain[J]. Emergency Medicine Clinics of North America, 2015, 33(2): 363-396.

[4] Flynn JM, Rio RD, Pizá PA. Closed ankle fractures in the diabetic patient[J]. Foot & Ankle International, 2000, 21(4): 311-319.

[5] Wensen RJAV, Bekerom MPJVD, Marti RK, et al. Reconstructive osteotomy of fibular malunion: review of the literature[J]. Strategies in Trauma & Limb Reconstruction, 2011, 6(2): 51-57.

[6] 阮志勇, 黄金亮, 罗从风. 踝关节腓骨旋转角测量:术中判断下胫腓骨联合复位的成功率[J]. 中国组织工程研究, 2013, 17(26): 4865-4871.

[7] Stroh DA, DeFontes K, Paez A, et al. Distal fibular malrotation and lateral ankle contact characteristics[J/OL]. (2017-09-30).http://dx.doi.org/10.1016/j.fas.2017.09.001.

[8] Meir M, Utku K, Amir M, et al. A method for detection of lateral malleolar malrotation using conventional fluoroscopy[J]. Journal of Orthopaedic Trauma, 2013, 27(12): e281.

[9] Dagnino G, Georgilas I, Morad S, et al. Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery[J]. International Journal of Computer Assisted Radiology & Surgery, 2017, 12(8): 1383-1397.

[10] Chang CJ, Lin GL, Tse A, et al. Registration of 2d c-arm and 3d ct images for a c-arm image-assisted navigation system for spinal surgery[J/OL]. (2015-5-28). http://dx.doi.org/10.1155/2015/478062.

[11] Weigelt L, Furnstahl P, Hirsiger S, et al. Three-Dimensional Correction of Complex Ankle Deformities With Computer-Assisted Planning and Patient-Specific Surgical Guides[J]. Journal of Foot & Ankle Surgery, 2017, 56(6): 1158-1164.

[12] Shalaby A, Farag AA, Ross A, et al. 2D-3D registration of human ankle using X-ray and CT images[C]// 2012 Cairo International Biomedical Engineering Conference (CIBEC). Giza, Egypt: Institute of Electrical and Electronics Engineers,2013: 23-26.

[13] Alam F, Rahman SU, Ullah S, et al. Medical image registration in image guided surgery: Issues, challenges and research opportunities[J]. Biocybernetics & Biomedical Engineering, 2018, 38(1):71-89.

[14] Hossain MM, Alam MJ, Pickering MR, et al. Repeat validation of a method to measure in vivo three dimensional hip kinematics using computed tomography and fluoroscopy[C]//2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, IL: Institute of Electrical and Electronics Engineers, 2014:6044-6047.

[15] Bruno DM, Samit B. Distance-driven projection and backprojection in three dimensions[J]. Physics in Medicine & Biology, 2004, 49(11): 2463-2475.

[16] Otake Y, Armand M, Armiger RS, et al. Intraoperative image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration[J]. IEEE Transactions on Medical Imaging, 2012, 31(4): 948-962.

[17] Pdl F, Banks SA. Automated registration of 3-d knee implant models to fluoroscopic images using lipschitzian optimization[J]. IEEE Transactions on Medical Imaging, 2018, 37(1): 326.

[18] 王雷. 影像导航手术中2D/3D图像配准[D].长春:中国科学院研究生院长春光学精密机械与物理研究所, 2015.

     Wang L. 2D/3D image registration in image -guided navigation surgery[D].Changchun:Changchun Institute of Optics,Fine Mehcanics and Physics,2015.

[19] Duménil A, Kaladji A, Castro M, et al. A versatile intensity-based 3D/2D rigid registration compatible with mobile C-arm for endovascular treatment of abdominal aortic aneurysm[J]. International Journal of Computer Assisted Radiology & Surgery, 2016, 11(9): 1-17.

[20] Fajfar I, Puhan J, B?rmen á. Evolving a Nelder-Mead Algorithm for Optimization with Genetic Programming[J]. Evolutionary Computation, 2017, 25(3): 351-373.

[21] Press W, Flannery B, Teukolsky S, et al. Numerical recipes in C: the art of scientific computing[M]. Cambridge, England:Cambridge University Press, 1988.

[22] Mori S, Kumagai M, Miki K, et al. Development of fast patient position verification software using 2D-3D image registration and its clinical experience[J]. Journal of Radiation Research, 2015, 56(5): 818-829.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com