设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
扩张-伸缩式机器人在肠道中的力学特性研究

Research on mechanical property of an expanding-extending robot in the intestinal environment

作者: 贺术  张震  颜国正 
单位:中国电子科技集团公司第三十二研究所(上海 201800)<p>上海航天电子技术研究所(上海 201109)</p><p>上海交通大学电子信息与电气工程学院(上海 200240)</p>
关键词: 胃肠道;  机器人;  力学模型;  拟态;  内镜 
分类号:R318.04
出版年·卷·期(页码):2019·38·1(59-66)
摘要:

目的 肠道机器人内镜是新一代肠道疾病诊疗设备,为了提高这类设备在肠道内自主运动的效率,本文研究了机器人运动机构与肠道之间的相互作用力对设备自主运动的影响。 方法 针对扩张-伸缩式机器人的运动原理提出了两个模型,即扩张机构与肠道之间的力学模型、机器人机身与肠道之间的力学模型,并在猪体外肠道环境下开展了实验验证。 结果 机器人机身与肠道之间的阻力在0.1~0.4 N之间;扩张机构与肠道之间的阻力在0.1~1.8 N之间,且与扩张直径成正比。扩张机构的扩张直径大于肠道直径超过10 mm后,扩张机构受到的肠道阻力将明显大于0.1~0.4 N,有利于有效驻留的产生。结论 这种利用腿式结构在肠道内产生力学差使机器人实现在肠道内自主运动的方式,以及腿式结构与肠道之间的力学模型能对胃肠道机器人的设计提供参考。

Objective Robotic intestinal endoscope is a new generation of intestinal diseases diagnosis equipment. In order to improve the autonomous locomotion efficiency of such devices in the intestinal environment, the motion mechanism and the interaction between intestine and the equipment is researched in the paper. Methods Two models are proposed based on the principle of the expanding-extending robot, which are respectively the mechanical model between expansion mechanism and the intestine, and the mechanical model between the robot body and the intestine. We carry out the experiment in vitro pig gut. Results The experimental results show that the resistance between the robot body and the intestinal tract is between 0.1N and 0.4N. The resistance between the expanding mechanism and the intestine is between 0.1 and 1.8N, which is proportional to the expansion diameter. Conclusions When the expansion of the expanding mechanism is larger than the diameter of the intestinal tract more than 10mm, the resistance of the expansion mechanism in the intestine will be significantly greater than 0.1-0.4 N, which is conducive to the effective anchor. The models can provide reference for the design of gastrointestinal robot.

参考文献:

[1] Menciassi A, Ciuti G, Cavallotti C. Future developments of video capsule endoscopy: Hardware[M]//Video Capsule Endoscopy. Berlin, Heidelberg:Springer, 2014: 543-556.

[2] Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy[J]. Nature, 2000, 405(6785): 417.

[3] Valdastri P, Simi M, Webster III R J. Advanced technologies for gastrointestinal endoscopy[J]. Annual Review of Biomedical Engineering, 2012, 14: 397-429.

[4] 杨凯, 颜国正, 高晋阳. 胶囊机器人无线能量传输系统设计[J]. 北京生物医学工程, 2016,35 (5): 510-515.

Yang K, Yan GZ, Gao JY. Design of wireless power supply system for robotic capsule[J]. Beijing Biomedical Engineering, 2016,35 (5): 510-515.

 [5] Valdastri P, Webster RJ, Quaglia C, et al. A new mechanism for mesoscale legged locomotion in compliant tubular environments[J]. IEEE Transactions on Robotics, 2009, 25(5): 1047-1057.

[6] 高鹏, 颜国正. 仿尺蠖气动肠道微机器人运动系统[J]. 北京生物医学工程, 2012, 31(5): 487-493.

Gao P, Yan GZ. Locomotion system of pneumatic inchworm-like microrobot for intestinal tract[J]. Beijing Biomedical Engineering, 2012, 31(5): 487-493.

[7] Terry BS, Schoen J A, Rentschler M E. Measurements of the contact force from myenteric contractions on a solid bolus[J]. Journal of Robotic Surgery, 2013, 7(1): 53-57.

[8] Terry BS, Passernig AC, Hill ML, et al. Small intestine mucosal adhesivity to in vivo capsule robot materials[J]. Journal of the Mechanical Behavior of  Biomedical Materials, 2012, 15: 24-32.

[9] Terry BS, Lyle AB, Schoen JA, et al. Preliminary mechanical characterization of the small bowel for in vivo robotic mobility[J]. Journal of Biomechanical Engineering, 2011, 133(9): 091010.

[10] Zhang C, Liu H, Tan R, et al. Modeling of velocity-dependent frictional resistance of a capsule robot inside an intestine[J]. Tribology Letters, 2012, 47(2): 295-301.

[11] Zhang C, Liu H, Li H. Modeling of frictional resistance of a capsule robot moving in the intestine at a constant velocity[J]. Tribology Letters, 2014, 53(1): 71-78.

[12] Chen W, Yan G, Wang Z, et al. A wireless capsule robot with spiral legs for human intestine[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(2): 147-161.

[13] Gao J, Yan G, Wang Z, et al. Locomotion enhancement of an inchworm-like capsule robot using long contact devices[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(2): e1759

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com