设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
往复式电磁铁驱动搏动式血泵的可行性研究

Feasibility study on pulsatile blood pump driven by a reciprocating electromagnet

作者: 伍进平  葛斌  方旭晨  张少伟  张磊  魏凌轩 
单位:上海理工大学(上海 200093)<p>上海市东医院危重症医学科(上海 200438)</p>
关键词: 体外膜肺氧合;  往复式电磁铁;  磁力;  搏动式血泵 
分类号:R318.01
出版年·卷·期(页码):2019·38·1(67-74)
摘要:

目的 为了得到更适合血液循环的动力装置,提出一种用于体外膜肺氧合(extracorporeal membrane oxygenation,ECMO)系统由电磁铁驱动的搏动式血泵,并研究其可行性。方法 首先利用电磁原理设计出电磁驱动机构,主要部件包括对称的两个电磁铁和压簧,两个电磁铁交替通电下使得动铁芯往复运动;利用容积控制原理,泵腔在动铁芯的驱动下收缩舒张;然后根据上述原理设计出血泵模型,包括电磁驱动部件和泵腔;最后建立包括血泵、电路控制部分、示波器、加速度传感器、输入输出管路和储液池的试验台,对血泵模型进行驱动力和流量输出测试。结果 血泵模型在通电电压7~12 V时动铁芯的初始驱动力为2.97~8.00 N。血泵模型产生的初始驱动力与工作电压呈正相关非线性关系,当通入电压12 V时血泵模型初始驱动力满足要求。当前压与后压为0、频率80次/min、工作电压7~12 V时的流量输出为0.97~3.81 L/min。当前压与后压为零,工作电压12 V、频率60~90次/min时的流量输出为3.1~3.8 L/min。当工作电压12 V、频率80次/min、前压0~40 cmH2O和后压50~110 cmH2O时的流量输出为0.55~3.59 L/min。血泵流量与工作电压和频率呈正相关,与后压呈负相关,与前压无显著性相关。结论 往复式电磁铁驱动搏动式血泵基本满足ECMO临床要求,具有重要应用前景,对体外循环血泵的发展具有重要意义,但仍需进一步研究和改进。

 Objective In order to obtain a power device that is more suitable for blood circulation, we proposes a pulse pump for extracorporeal membrane oxygenation (ECMO) system driven by an electromagnet and studies its feasibility. Methods Firstly, the electromagnetic drive mechanism is designed by using the electromagnetic principle. The main components include two symmetrical electromagnets and springs. The two electromagnets are alternately energized to make the moving iron core reciprocate.Using the principle of volume control, the pump cavity shrinks and relaxes under the action of moving iron core;Then design the pump model based on the above principles, including the electromagnetic drive components and pump chambers; Finally, a test bench including a blood pump, a circuit control section, an oscilloscope, an accelerometer, an input/output circuit, and a reservoir was established, and the blood pump model was tested for driving force and flow output. Results  In the blood pump model, the initial driving force of the moving iron core is 2.97-8.00 N when the energizing voltage is 7-12 V.The initial driving force generated by the blood pump model has a positive correlation with the working voltage. When the voltage is 12 V, the initial driving force of the blood pump model meets the requirements.The flow rate output is 0.97-3.81 L/min when the front pressure and back pressure are zero, the frequency is 80 times/min, and the working voltage is 7-12V.When the front pressure and back pressure are zero, when the operating voltage is 12 V, the flow output at a frequency of 60 to 90 times/min is 3.1 to 3.8 L/min.When the operating voltage is 12V and the frequency is 80 times/min, the flow output when the front pressure is 0-40 cmH2O and the back pressure is 50-110 cmH2O is 0.55-3.59 L/min.The blood pump flow is positively correlated with the working voltage and frequency, negatively correlated with the back pressure, and had no significant correlation with the front pressure. Conclusions The reciprocating electromagnet-driven pulsed blood pump basically meets the clinical requirements of extracorporeal membrane oxygenation, but further research and improvement are needed. The feasibility study has important application prospects and has important significance for the development of extracorporeal circulation blood pump. 

参考文献:

[1] 李宓.急性呼吸窘迫综合征[J].器官移植内科学杂志,2008,3(2):77-89.

Li M.Acute respiratory distress syndrome [J]. Journal of Transplant Medicine,2008,3(2):77-89.  

[2] 肖大伟,徐博翎.基于集中参数模型的左心室辅助装置血流动力学仿真[J].北京生物医学工程,2016,35(4):367-373,380.

Xiao DW.Hsu PO. Hemodynamic recovery from heart failure with left ventricular assist device:a lumped-parameter simulation[J].Beijing Biomedical Engineering,2016,35(4):367-373,380. 

[3] 尹俊,白春学.机械通气在急性呼吸窘迫综合征中的应用进展[J].中国急救医学,2014,34(2):100-103.

Yin J. Bai CX.Mechanical ventilation in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care Medicine,2014,34(2):100-103.

[4] Lee S.Chaturvedi A. Imaging adults on extracorporeal membrane oxygenation(ECMO) [J]. Insights Imaging,2014,5(6):731-742.

[5] 刘东,王盛宇,孙凌波, 等.ECMO的临床应用[J].北京生物医学工程,2008,27(3):305-308,327.

Liu D.Wang SY.Sun LB.et al.Clinical use of extracorporeal membrane oxygenation[J].Beijing Biomedical Engineering,2008,27(3):305-308,327.

[6] Wu SC.Chen WT.Lin HH.et al. Use of extracorporeal membrane oxygenation in severe traumatic lung injury with respiratory failure [J]. American Journal of Emergency Medicine, 2015,33(5):658-662.

[7] 许自豪,杨明,欧文初, 等.基于数值模拟的血泵血液破坏性研究进展[J].中国医疗设备,2016,31(1):26-30,12.

Xu ZH.Yang M.Ou WC.et al.Advances in the Investigation of Numerical Simulation-based Blood Damage of Blood Pumps[J].China Medical Devices,2016,31(1):26-30,12.

[8] 李卫东,姚奇,杜建军, 等.基于CFD的液悬浮人工心脏泵叶轮入口优化分析[J].北京生物医学工程,2017,36(1):21-28,54. 

Li WD.Yao Q.Du JJ.et al.Optimizationan alysis for impeller inlet of artificial heart pump with hydraulic suspension based on CFD[J].Beijing Biomedical Engineering,2017,36(1):21-28,54. 

[9] 魏朝富,杨石平.紧凑型轴流式血泵电机的设计与仿真[J].现代机械,2016,(5):61-64.

Wei CF.Yang SP.Design and simulation of the motor for compact axial-flow blood pump[J].Modern Machinery,2016,(5):61-64.

[10] Kafagy D H.Dwyer T W.Mckenna K L.Mulles J P.et al.Design of axial blood pumps for patients with dysfunctional fontan physiology: computational studies and performance testing[J].Artificial Organs, 2015, 39(1): 34-42.

[11] 王阳,杨明,许自豪, 等.一种离心血泵的血流动力学特性分析[J].中国医疗器械杂志,2015,39(1):16-20. 

Wang Y.Yang M.Xu ZH.et al.Hemodynamic analysis of a centrifugal blood pump[J].Chinese Journal of Medical Instrumentation,2015,39(1):16-20. 

[12] 王少强,魏松洋,马志强, 等.搏动灌注和非搏动灌注对肾功能的影响[J].中国体外循环杂志,2011,9(3):149-151,155.

Wang SQ.Wei SY.Ma ZQ.et al.The impact of pulsatile and non-pulsatile perfusion on renal function in patients underwent cardiopulmonary bypass[J]. Chinese Journal of Extracorporeal Circulation,2011,9(3):149-151,155. 

[13] 赵举,杨九光,刘晋萍, 等.搏动体外循环增加小儿脑氧供及改善组织微循环的临床研究[J].中国体外循环杂志,2011,9(3):145-148,162.

Zhao J.Yang JG.Liu JP.et al.Clinical study of pulsatile cardiopulmonary bypass on increasing cerebral oxygenation and ameliorating tissue microcirculation in pediatric heart surgery[J]. Chinese Journal of Extracorporeal Circulation,2011,9(3):145-148,162.

[14] 谭江浩,葛斌,方旭晨, 等.磁耦合驱动搏动式血泵的可行性研究[J].医用生物力学,2015,30(5):458-462,478.

Tan JH.Ge B.Fang XC.et al.Feasibility study on magnetic coupling-driven pulsate blood pump[J].Journal of Medical Biomechanics,2015,30(5):458-462,478.

[15] 陆通,葛斌,刘京京,等. 搏动式电磁血泵电控系统的研究[J/OL]. 自动化学报,2017,44(X):1-9..[2017-11-02]. http://kns.cnki.net/kcms/detail/11.2109.TP.20171102.1411.009.html

Lu T.Ge B.Liu JJ.et al.The Study for electric control system of electromagnetic pulsate blood pump[J].Acta Automatica Sinica,2017,44(X):1-9.[2017-11-02]. http://kns.cnki.net/kcms/detail/11.2109.TP.20171102.1411.009.html

[16] 刘京京,葛斌,陆通,等.短期辅助用直流电磁驱动搏动式血泵设计与测试[J].中国生物医学工程学报,2018,37(1):49-56.

Liu JJ.Ge B.Lu T.et al.The Design and test of pulsating blood pump driven by direct-current electromagnetism for temporary assistance[J].Chinese Journal of Biomedical Engineering,2018,37(1):49-56.

[17] 吴倩,李建,苏秀苹.一种螺管式电磁铁的静态特性及其影响因素分析[J].电器与能效管理技术,2017,(1):8-12.

Wu Q.Li J.Su XP. Static characteristics and innuencing factors of a solenoid magnet[J].Electrical and energy efficiency management technology,2017,(1):8-12.

[18] 娄路亮,王海洲.电磁阀设计中电磁力的工程计算方法[J].导弹与航天运载技术,2007,287(1):40-45.

Liu LL.Wang HZ.Methods of Electromagnetic Force Calculation for Engineering Application[J].Missile and Space Vehcile,2007,287(1):40-45.

[19] 王莲芸. 现代医学导论[M]. 北京: 科学出版社, 2010.

[20] 王庭槐. 生理学[M]. 北京: 高等教育出版社, 2004.

[21] Maslach-Hubbard A.Bratton SL.Extracorporeal membrane oxygenation for pediatric respiratory failure:History,development and current status[J]. World Journal of Critical Care Medicine,2013,2(4):29-39.

[22] 路力军,胡兆燕,陈正龙, 等.体外循环用血泵研究进展[J].北京生物医学工程,2012,31(4):433-439.

Lu LJ.Hu ZY.Chen ZL.et al.Research on the blood pump for extracorporeal circulation[J].Beijing Biomedical Engineering,2012,31(4):433-439.

[23] 陈智慧,张娅,常宇.心室辅助下切应力对红细胞形态的影响[J].北京生物医学工程,2015,34(2):125-132. 

Chen ZH.Zhang Y.Chang Y.Effect of shear stress on the changes in erythrocyte morphology under continuous flow ventricular assist device[J].Beijing Biomedical Engineering,2015,34(2):125-132.

[24] 程云章,朱莉花,张伟国.基于CFD技术的Sarns离心式血泵流动特性分析[J].北京生物医学工程,2012,31(2):111-116. 

Cheng YZ.Zhu LH.Zhang WG.Flow characteristics in Sarns centrifugal blood pump based on computational fluid dynamics technology[J].Beijing Biomedical Engineering,2012,31(2):111-116.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com