设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
人工智能在医学影像诊断中的应用

Application of artificial intelligence in medical imaging diagnosis

作者: 刘丰伟  唐晓英  王尊升  李汉军 
单位:北京理工大学(北京100000)
关键词: 人工智能;  医学影像诊断;  分割;  早期诊断;  检测 
分类号:R318
出版年·卷·期(页码):2019·38·2(206-211)
摘要:

人工智能在处理大数据、复杂非确定性数据、深入挖掘数据潜在信息等方面有着超越人类的优势。医学影像数据包含丰富的人体健康信息,是医生做出医学诊断的重要依据。面对复杂的医学影像信息和持续增长的医学影像诊断需求,医生人工影像解读暴露出的易受主观认知影响、效率低且误诊率高等诸多缺点愈加明显。本文从人工智能技术特点出发,结合具体病症分析人工智能在人体结构、病灶区的分割,疾病的早期诊断,解剖结构、病灶区的检测等方面的研究成果,最后总结现阶段人工智能在医学影像诊断中尚存在的问题,包括诊断结果可解释性差、医学数据量少及系统性评估标准缺失等,并进一步分析未来人工智能在医学影像诊断中的发展方向。

Artificial intelligence has advantages over human in dealing with big data, complex non-deterministic data, and deep mining of potential information. Medical image data contains a wealth of information on human health and is an important basis for doctors to make medical diagnosis. Faced with complex medical imaging information and the growing demand for medical imaging diagnosis, image interpretion by doctors shows many shortcomings such as susceptibility for subjective cognition, low efficiency and high misdiagnosis rate. Based on the characteristics of artificial intelligence, this paper focuses on the analysis of artificial intelligence in segmentation of human body structure and lesion, early diagnosis of disease, detection of anatomical structure and lesion area, etc. At present, the application of artificial intelligence in medical imaging diagnosis still has problems such as poor interpretability, less available medical data and lack of systematic evaluation criteria, and the future development of artificial intelligence in medical imaging diagnosis is further analyzed.

参考文献:

[1] Bigler ED. Neuroimaging as a biomarker in symptom validity and performance validity testing [J]. Brain Imaging and Behavior, 2015, 9(3): 421-444.

[2] 刘飞, 张俊然, 杨豪. 基于深度学习的医学图像识别研究进展 [J]. 中国生物医学工程学报, 2018, 37(1): 86-94.

Liu F, Zhang JR, Yang H. Research progress of medical image recognition based on deep learning[J]. Chinese Journal of Biomedical Engineering, 2018, 37(1): 86-94.

[3] 王博超, 张新峰. 基于人工智能和临床诊断的上肢康复评估方法研究进展[J]. 北京生物医学工程, 2018, 37(1): 103-108.

Wang BC, Zhang XF. Research progress of assessment methods based on artifical intelligence and clinical diagnosis in upper limb rehabilitation [J]. Beijing Biomedical Engineering, 2018, 37(1): 103-108.

[4] Fasihi MS, Mikhael WB. Overview of current biomedical image segmentation methods[C]// 2016 International Conference on Computational Science and Computational Intelligence.  Las Vegas, NV, USA: IEEE Press, 2017:803-808.

[5] Sumathi T, Vivekanandan P, Balaji R. Retinal vessel segmentation using neural network (RVSNN) [J]. IET Image Processing, 2018,12(5): 669-678. 

[6] Brancati N, Frucci M, Gragnaniello D, et al. Learning-based approach to segment pigment signs in fundus images for Retinitis Pigmentosa analysis[J]. Neurocomputing, 2018,308:159-171.

[7] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42(9): 60-88.

[8] Cirean DC, Giusti A, Gambardella LM, et al. Deep neural networks segment neuronal membranes in electron microscopy images[J]. Advances in Neural Information Processing Systems, 2012, 25:2852-2860.

[9] Pereira S, Pinto A, Alves V, et al. Brain tumor segmentation using convolutional neural networks in MRI images [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1240-1251.

[10] Brosch T, Tang LY, Yoo Y, et al. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1229-1239.

[11] Summers RM. Progress in fully automated abdominal CT interpretation [J]. American Journal of Roentgenology, 2016, 207(1): 67-79.

[12] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2015,9351:234-241.

[13] Zhang R, Shen J, Wei F, et al. Medical image classification based on multi-scale non-negative sparse coding[J]. Artificial Intelligence in Medicine, 2017, 83: 44-51.

[14] Suk HI, Shen D. Deep learning-based feature representation for AD/MCI classification [J]. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2013, 16(Pt 2): 583-590.

[15] Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI [J]. Behavioural Brain Research, 2017, 322(Pt B):339-350.

[16] Suk HI, Lee SW, Shen D. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis [J]. Brain Structure & Function, 2015, 220(2): 841-859.

[17] Hosseini-Asl E, Ghazal M, Mahmoud A, et al. Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network [J]. Frontiers in Bioscience (Landmark Edition), 2018, 23: 584-596.

[18] Wang SH, Phillips P, Sui Y, et al. Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling [J]. Journal of Medical Systems, 2018, 42(5): 85-95.

[19] Capper D, Jones DTW, Sill M, et al. DNA methylation-based classification of central nervous system tumours[J]. Nature, 2018, 555(7697): 469-474.

[20] Xu J, Xiang L, Liu Q, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images [J]. IEEE Transactions on Medical Imaging, 2016, 35(1): 119-130.

[21] Vesal S, Ravikumar N, Davari AA, et al. Classification of breast cancer histology images using transfer learning[C]// International Conference Image Analysis and Recognition. Berlin: Springer, 2018: 812-819.

[22] Turkki R, Linder N, Kovanen PE, et al. Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples [J]. Journal of Pathology Informatics, 2016, 7(1):38-46.

[23] Xu Y, Jia Z, Wang LB, et al. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features[J]. BMC Bioinformatics, 2017, 18(1): 281-297.

[24] Kllén H, Molin J, Heyden A, et al. Towards grading gleason score using generically trained deep convolutional neural networks[C]// IEEE, International Symposium on Biomedical Imaging. Prague, Czech Republic: IEEE Press, 2016: 1163-1167.

[25] Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122–1131.

[26] Yang D, Zhang S, Yan Z, et al. Automated anatomical landmark detection ondistal femur surface using convolutional neural network[C]// 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). New York, NY, USA: IEEE Press, 2015: 17-21.

[27] Huang R, Xie W, Alison NJ. VP-Nets : efficient automatic localization of key brain structures in 3D fetal neurosonography[J]. Medical Image Analysis, 2018: 127-139.

[28] Chen H, Yu L, Dou Q, et al. Automatic detection of cerebral microbleeds via deep learning based 3D feature representation[C]// 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). New York, NY, USA: IEEE Press, 2015:764-767.

[29] Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1182-1195.

[30] Jiang H, Ma H, Qian W, et al. An automatic detection system of lung nodule based on multi-group patch-based deep learning network[J]. IEEE Journal of Biomedical & Health Informatics, 2017,22(4):1227-1237.

[31] Yap MH, Pons G, Marti J, et al. Automated breast ultrasound lesions detection using convolutional neural networks[J]. IEEE Journal of  Biomedical and Health Informatics, 2017,22(4): 1218-1226.

[32] Roth HR, Lu L, Liu J, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1170-1181.

[33] Setio AA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1160-1169.

[34] van Grinsven MJJP, van Ginneken B, Hoyng CB, et al. Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1273-1284.

[35] Humpire-Mamani GE, Setio A, van Ginneken B, et al. Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans[J]. Physics in Medicine & Biology, 2018,63(8): 085003.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com