[1] Bigler ED. Neuroimaging as a biomarker in symptom validity and performance validity testing [J]. Brain Imaging and Behavior, 2015, 9(3): 421-444. [2] 刘飞, 张俊然, 杨豪. 基于深度学习的医学图像识别研究进展 [J]. 中国生物医学工程学报, 2018, 37(1): 86-94. Liu F, Zhang JR, Yang H. Research progress of medical image recognition based on deep learning[J]. Chinese Journal of Biomedical Engineering, 2018, 37(1): 86-94. [3] 王博超, 张新峰. 基于人工智能和临床诊断的上肢康复评估方法研究进展[J]. 北京生物医学工程, 2018, 37(1): 103-108. Wang BC, Zhang XF. Research progress of assessment methods based on artifical intelligence and clinical diagnosis in upper limb rehabilitation [J]. Beijing Biomedical Engineering, 2018, 37(1): 103-108. [4] Fasihi MS, Mikhael WB. Overview of current biomedical image segmentation methods[C]// 2016 International Conference on Computational Science and Computational Intelligence. Las Vegas, NV, USA: IEEE Press, 2017:803-808. [5] Sumathi T, Vivekanandan P, Balaji R. Retinal vessel segmentation using neural network (RVSNN) [J]. IET Image Processing, 2018,12(5): 669-678. [6] Brancati N, Frucci M, Gragnaniello D, et al. Learning-based approach to segment pigment signs in fundus images for Retinitis Pigmentosa analysis[J]. Neurocomputing, 2018,308:159-171. [7] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42(9): 60-88. [8] Cirean DC, Giusti A, Gambardella LM, et al. Deep neural networks segment neuronal membranes in electron microscopy images[J]. Advances in Neural Information Processing Systems, 2012, 25:2852-2860. [9] Pereira S, Pinto A, Alves V, et al. Brain tumor segmentation using convolutional neural networks in MRI images [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1240-1251. [10] Brosch T, Tang LY, Yoo Y, et al. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1229-1239. [11] Summers RM. Progress in fully automated abdominal CT interpretation [J]. American Journal of Roentgenology, 2016, 207(1): 67-79. [12] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2015,9351:234-241. [13] Zhang R, Shen J, Wei F, et al. Medical image classification based on multi-scale non-negative sparse coding[J]. Artificial Intelligence in Medicine, 2017, 83: 44-51. [14] Suk HI, Shen D. Deep learning-based feature representation for AD/MCI classification [J]. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2013, 16(Pt 2): 583-590. [15] Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI [J]. Behavioural Brain Research, 2017, 322(Pt B):339-350. [16] Suk HI, Lee SW, Shen D. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis [J]. Brain Structure & Function, 2015, 220(2): 841-859. [17] Hosseini-Asl E, Ghazal M, Mahmoud A, et al. Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network [J]. Frontiers in Bioscience (Landmark Edition), 2018, 23: 584-596. [18] Wang SH, Phillips P, Sui Y, et al. Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling [J]. Journal of Medical Systems, 2018, 42(5): 85-95. [19] Capper D, Jones DTW, Sill M, et al. DNA methylation-based classification of central nervous system tumours[J]. Nature, 2018, 555(7697): 469-474. [20] Xu J, Xiang L, Liu Q, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images [J]. IEEE Transactions on Medical Imaging, 2016, 35(1): 119-130. [21] Vesal S, Ravikumar N, Davari AA, et al. Classification of breast cancer histology images using transfer learning[C]// International Conference Image Analysis and Recognition. Berlin: Springer, 2018: 812-819. [22] Turkki R, Linder N, Kovanen PE, et al. Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples [J]. Journal of Pathology Informatics, 2016, 7(1):38-46. [23] Xu Y, Jia Z, Wang LB, et al. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features[J]. BMC Bioinformatics, 2017, 18(1): 281-297. [24] Kllén H, Molin J, Heyden A, et al. Towards grading gleason score using generically trained deep convolutional neural networks[C]// IEEE, International Symposium on Biomedical Imaging. Prague, Czech Republic: IEEE Press, 2016: 1163-1167. [25] Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122–1131. [26] Yang D, Zhang S, Yan Z, et al. Automated anatomical landmark detection ondistal femur surface using convolutional neural network[C]// 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). New York, NY, USA: IEEE Press, 2015: 17-21. [27] Huang R, Xie W, Alison NJ. VP-Nets : efficient automatic localization of key brain structures in 3D fetal neurosonography[J]. Medical Image Analysis, 2018: 127-139. [28] Chen H, Yu L, Dou Q, et al. Automatic detection of cerebral microbleeds via deep learning based 3D feature representation[C]// 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). New York, NY, USA: IEEE Press, 2015:764-767. [29] Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1182-1195. [30] Jiang H, Ma H, Qian W, et al. An automatic detection system of lung nodule based on multi-group patch-based deep learning network[J]. IEEE Journal of Biomedical & Health Informatics, 2017,22(4):1227-1237. [31] Yap MH, Pons G, Marti J, et al. Automated breast ultrasound lesions detection using convolutional neural networks[J]. IEEE Journal of Biomedical and Health Informatics, 2017,22(4): 1218-1226. [32] Roth HR, Lu L, Liu J, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1170-1181. [33] Setio AA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1160-1169. [34] van Grinsven MJJP, van Ginneken B, Hoyng CB, et al. Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1273-1284. [35] Humpire-Mamani GE, Setio A, van Ginneken B, et al. Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans[J]. Physics in Medicine & Biology, 2018,63(8): 085003.
|