设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于Matlab环境的脑控轮椅搭建与实验验证

Construction and validation of SSVEP brain- controlled wheelchair system based on Matlab environment

作者: 刘明  王康宁  陈小刚  王瑶  王慧泉  蒲江波  谢小波  王金海  徐圣普 
单位:中国医学科学院北京协和医学院生物医学工程研究所(天津 300192) 天津工业大学电子与信息工程学院(天津 300387)
关键词: 脑控轮椅;  稳态视觉诱发电位;  脑-机接口;  脑电;  性能评价 
分类号:R318.04; R318.6
出版年·卷·期(页码):2019·38·2(190-197)
摘要:

目的 基于脑电(electroencephalography,EEG)的脑控轮椅(brain-controlled wheelchair,BCW)能够为无法通过四肢操控轮椅运动的严重肢体残疾或运动障碍患者提供辅助,满足日常移动或出行需要。本文以兼顾系统性价比和准确率为研究目的,采用便携脑电放大器,拟搭建一个基于Matlab环境的BCW系统,并验证系统的可行性和实用性。方法 首先搭建一个基于稳态视觉诱发电位(steady-state visual evoked potential,SSVEP)的BCW系统,系统主要包括脑电刺激、采集与处理以及轮椅控制两大部分,用户无需长期训练即可通过脑电控制轮椅的运动状态。然后招募3名健康受试者进行系统分类准确率验证实验和预设路径控制验证实验。其中,分类准确率验证实验要求受试者按照语音提示指令,注视对应刺激闪烁块以得到分类结果;预设路径控制验证实验要求受试者完成三个轮椅既定路线控制任务。实验后填写问卷调查衡量本系统的控制难度、受试者舒适度和疲劳程度。结果 比较提示指令与分类结果得到系统分类准确率为97%±1%。路径控制实验中受试者均能控制轮椅按照预设路径运动到目的地,且获得用时、实际路径长度、命令个数、时间优化率、路径优化率等指标。结论 本文搭建的基于Matlab环境的SSVEP-BCW系统分类准确率较高,控制效果和控制舒适度较好,具有一定的实用性。

 Objective Brain-controlled wheelchair (BCW) based on electroencephalography (EEG) can provide special assistance for severely disabled individual or movement disorders. Therefore, this paper intends to build a BCW system based on Matlab environment for high accuracy, portability and low cost. And we verify the feasibility and practicability of the system through experiments. Methods First, we construct a BCW system based on steady-state visual evoked potential (SSVEP). The system mainly includes two parts: EEG stimulation, acquisition and processing, and wheelchair control. Users can control the movement of the wheelchair through EEG without long-term training. Then three healthy subjects are recruited for the verification experiments of system classification accuracy and the preset path control. The verification experiment of the classification accuracy requires the subjects to gaze at the corresponding stimulus flicker block according to the voice guide to obtain the classification results. In verification experiment of preset path control, subjects drive the BCW following 3 predefined paths. Finally, questionnaires are filled in to measure the operation difficulty of the system, fatigue and comfort level of the subjects. Results By comparing the classification result with the prompt instruction, we can get that the classification accuracy of the system is 97%±1%. All subjects can control the wheelchair to move to the destination according to the preset path in the path control experiment, and total time, actual path, total number of commands, time optimality ratio, path length optimality ratio are obtained. Conclusions The classification accuracy of SSVEP-BCW system built in this paper based on Matlab environment is high, control effect is good, with certain practicability.

参考文献:

[1] Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain–computer interface technology: a review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173.

[2] Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography and Clinical Neurophysiology, 1988, 70(6): 510-523.

[3] Pfurtscheller G, Flotzinger D, Kalcher J. Brain-computer interface: a new communication device for handicapped persons[J]. Journal of Microcomputer Applications, 1993, 16(3): 293-299.

[4] Cheng M, Gao X, Gao S, et al. Design and implementation of a brain-computer interface with high transfer rates[J]. IEEE Transactions on Bio-medical Engineering, 2002, 49(10): 1181-1186.

[5] Tanaka K, Matsunaga K, Wang HO. Electroencephalogram-based control of an electric wheelchair[J]. IEEE Transactions on Robotics, 2005, 21(4): 762-766.

[6] Rebsamen B, Burdet E, Guan C, et al. A brain-controlled wheelchair based on P300 and path guidance[C]// The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa, Italy: IEEE Press, 2006: 1101-1106.

[7] Müller SMT, Diez PF, Bastos-Filho TF, et al. Robotic wheelchair commanded by people with disabilities using low/high-frequency SSVEP-based BCI[C]// World Congress on Medical Physics and Biomedical Engineering. Toronto, Canada: Springer Press, 2015, 51: 1177-1180.

[8] Long J, Li Y, Wang H, et al. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(5): 720-729.

[9] Li Y, Pan J, Wang F, et al. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(11): 3156-3166.

[10] Wang H, Li Y, Long J, et al. An asynchronous wheelchair control by hybrid EEG-EOG brain-computer interface[J]. Cognitive Neurodynamics, 2014, 8(5): 399-409.

[11] Wang Y, Jung T. Visual stimulus design for high-rate SSVEP BCI[J]. Electronics Letters, 2010, 46(15): 1057-1058.

[12] Nakanishi M, Wang Y, Wang Y-T, et al. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate[J]. PLoS One, 2014, 9(6): e99235.

[13] Chen X, Wang Y, Nakanishi M, et al. Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller[C]// 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, IL, USA: IEEE Press, 2014: 3993-3996.

[14] Pastor MA, Artieda J, Arbizu J, et al. Human cerebral activation during steady-state visual-evoked responses[J]. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 2003, 23(37): 11621-11627.

[15] Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12(4): 046008.

[16] Iturrate I, Antelis JM, Kübler A, et al. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation[J]. IEEE Transactions on Robotics, 2009, 25(3): 614-627.

[17] Cao L, Li J, Ji H, et al. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control[J]. Journal of Neuroscience Methods, 2014, 229: 33-43.

[18] Wang H, Bezerianos A. Brain-controlled wheelchair controlled by sustained and brief motor imagery BCIs[J]. Electronics Letters, 2017, 53(17): 1178-1180.

[19] Aziz F, Arof H, Mokhtar N, et al. HMM based automated wheelchair navigation using EOG traces in EEG[J]. Journal of Neural Engineering, 2014, 11(5): 056018.

[20] Rebsamen B, Guan C, Zhang H, et al. A brain controlled wheelchair to navigate in familiar environments[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(6): 590-598.

[21] 陈小刚, 徐圣普. 基于稳态视觉诱发电位的脑控轮椅的控制方式[J].北京生物医学工程, 2018, 37(2): 215-220.

Chen XG, Xu SP. Control method of brain-controlled wheelchairs based on steady-state visual evoked potential[J]. Beijing Biomedical Engineering, 2018, 37(2): 215-220.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com