[1] Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain–computer interface technology: a review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173. [2] Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography and Clinical Neurophysiology, 1988, 70(6): 510-523. [3] Pfurtscheller G, Flotzinger D, Kalcher J. Brain-computer interface: a new communication device for handicapped persons[J]. Journal of Microcomputer Applications, 1993, 16(3): 293-299. [4] Cheng M, Gao X, Gao S, et al. Design and implementation of a brain-computer interface with high transfer rates[J]. IEEE Transactions on Bio-medical Engineering, 2002, 49(10): 1181-1186. [5] Tanaka K, Matsunaga K, Wang HO. Electroencephalogram-based control of an electric wheelchair[J]. IEEE Transactions on Robotics, 2005, 21(4): 762-766. [6] Rebsamen B, Burdet E, Guan C, et al. A brain-controlled wheelchair based on P300 and path guidance[C]// The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa, Italy: IEEE Press, 2006: 1101-1106. [7] Müller SMT, Diez PF, Bastos-Filho TF, et al. Robotic wheelchair commanded by people with disabilities using low/high-frequency SSVEP-based BCI[C]// World Congress on Medical Physics and Biomedical Engineering. Toronto, Canada: Springer Press, 2015, 51: 1177-1180. [8] Long J, Li Y, Wang H, et al. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(5): 720-729. [9] Li Y, Pan J, Wang F, et al. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(11): 3156-3166. [10] Wang H, Li Y, Long J, et al. An asynchronous wheelchair control by hybrid EEG-EOG brain-computer interface[J]. Cognitive Neurodynamics, 2014, 8(5): 399-409. [11] Wang Y, Jung T. Visual stimulus design for high-rate SSVEP BCI[J]. Electronics Letters, 2010, 46(15): 1057-1058. [12] Nakanishi M, Wang Y, Wang Y-T, et al. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate[J]. PLoS One, 2014, 9(6): e99235. [13] Chen X, Wang Y, Nakanishi M, et al. Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller[C]// 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, IL, USA: IEEE Press, 2014: 3993-3996. [14] Pastor MA, Artieda J, Arbizu J, et al. Human cerebral activation during steady-state visual-evoked responses[J]. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 2003, 23(37): 11621-11627. [15] Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12(4): 046008. [16] Iturrate I, Antelis JM, Kübler A, et al. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation[J]. IEEE Transactions on Robotics, 2009, 25(3): 614-627. [17] Cao L, Li J, Ji H, et al. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control[J]. Journal of Neuroscience Methods, 2014, 229: 33-43. [18] Wang H, Bezerianos A. Brain-controlled wheelchair controlled by sustained and brief motor imagery BCIs[J]. Electronics Letters, 2017, 53(17): 1178-1180. [19] Aziz F, Arof H, Mokhtar N, et al. HMM based automated wheelchair navigation using EOG traces in EEG[J]. Journal of Neural Engineering, 2014, 11(5): 056018. [20] Rebsamen B, Guan C, Zhang H, et al. A brain controlled wheelchair to navigate in familiar environments[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(6): 590-598. [21] 陈小刚, 徐圣普. 基于稳态视觉诱发电位的脑控轮椅的控制方式[J].北京生物医学工程, 2018, 37(2): 215-220. Chen XG, Xu SP. Control method of brain-controlled wheelchairs based on steady-state visual evoked potential[J]. Beijing Biomedical Engineering, 2018, 37(2): 215-220.
|