设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
心血管介入手术辐射剂量影响因素的分析

Analysis on influence factors of X-ray radiation dose in cardiovascular interventions

作者: 杨博鑫  李言  武王将  杨智 
单位:首都医科大学生物医学工程学院(北京 100069)
关键词: 心血管介入;  X射线;  辐射剂量 
分类号:R318
出版年·卷·期(页码):2019·38·2(171-176)
摘要:

目的 测定不同类型心血管介入手术患者接受的X线辐射剂量,并对临床实践中与辐射剂量相关的因素进行分析,以降低患者接受的辐射剂量。方法 随机采集2016年1月至2017年12月间在首都医科大学附属北京安贞医院心脏内科导管室进行心血管介入治疗的360例患者。根据心血管介入手术类型的不同,共分为5组:冠状动脉造影术 (coronary angiography, CAG) 组、经皮冠状动脉介入治疗(percutaneous coronary intervention, PCI)组、心导管射频消融术 (radiofrequency catheter ablation, RFCA) 组、先天性心脏病治疗 (congenital heart diseases therapy, CHD) 组、永久性心脏起搏器植入术 (permanent cardiac pacemaker implantation, PCPI) 组。分析相关参数包括剂量面积乘积(dose-area product, DAP)、累积皮肤表面入射剂量(cumulative dose, CD)、透视时间(fluoroscopy time, FT)、峰值皮肤剂量(peak skin dose, PSD)、摄像帧数、患者BMI及设备使用年限等,确定心血管介入手术中造成辐射剂量差异的主要因素。结果 CHD组患者BMI在各组之中最低。CAG组急诊比例最高(32.0%),CHD组患者年龄最低。CAG组和CHD组的CD值、DAP值、FT和PSD均为较低水平。PCI组患者接受辐射剂量最高(P<0.05)。PCPI患者接受辐射剂量明显偏低,剂量多为0.5 Gy以下。患者的透视时间与CD值和DAP值呈现正相关,不同术者之间患者接受辐射剂量的差异具有统计学意义。DAP值与患者BMI高度相关。患者BMI(>30kg/m2)、设备使用年限(>7y)、PCI操作以及操作者技术水平是患者辐射剂量偏高与否的临床特征。结论 患者本体参数、介入方式以及操作者决定了患者辐射剂量的临床特征。此外,设备使用年限、摄影帧数、透视时间、透视剂量也与患者辐射剂量有关。

Objective This study determinates the radiation doses of patients under different types of cardiovascular interventions and analyzes the major factors associated with radiation dose in routine clinical practice to reduce the radiation doses received by the patients. Methods There were 360 patients with cardiovascular interventions in Cardiology Department, Beijing Anzhen Hospital, Capital Medical University between January 2016 and December 2017 randomly selected in this study. According to the types of cardiovascular interventions, there were 5 groups: coronary angiography (CAG), percutaneous coronary intervention (PCI), radiofrequency catheter ablation (RFCA), congenital heart diseases therapy (CHD), and permanent cardiac pacemaker implantation (PCPI). The acquisition parameters included dose-area product (DAP), cumulative dose (CD), fluoro time (FT), peak skin dose (PSD), frame rate, BMI and device age. We analyzed the relevant parameters to determine the influence factors of radiation dose in interventional surgery. Results The BMI in CHD group was the lowest among all groups. CAG group had the highest proportion of emergency (32.0%). Patients in CHD group had the youngest age. CD, DAP, fluoroscopy time, and PSD of CAG group and CHD group were the lowest. Patients in PCPI group received significantly lower radiation doses (below 0.5 Gy). Fluoroscopy time showed positive correlation with CD value and DAP value. The difference of radiation dose of the patients by different operators was statistically significant. DAP was highly correlated with patient BMI and increased slightly with age. Patient BMI (> 30 kg / m2), device age (> 7 years), PCI operation, and operator skills were the important factors determining the radiation dose. Conclusions Patient properties, types of interventions, and operators determine the radiation dose in clinical practice. In addition, equipment life, frame rate, fluoroscopy time are also relevant to the radiation dose received by the patient.

参考文献:

1. Sherer MAS, Visconti PJ, Ritenour ER, et al. Radiation protection in medical radiography[M]. Amsterdam, Netherlands: Elsevier Health Sciences, 2014.

2. Christopoulos G, Makke L, Christakopoulos G, et al. Optimizing radiation safety in the cardiac catheterization laboratory[J]. Catheterization and Cardiovascular Interventions, 2016, 87(2): 291-301.

3. Carpeggiani C, Picano E. The radiology informed consent form: recommendations from the European Society of Cardiology position paper[J]. Journal of Radiological Protection, 2016, 36(2): S175.

4. Cousins C, Miller DL, Bernardi G, et al. ICRP publication 120: radiological protection in cardiology[J]. Annals of the ICRP 2013,42(1):1–125.

5. Durán A, Hian SK, Miller DL, et al. A summary of recommendations for occupational radiation protection in interventional cardiology[J]. Catheterization and Cardiovascular Interventions, 2013, 81(3): 562-567.

6. Jaschke W, Schmuth M, Trianni A, et al. Radiation-induced skin injuries to patients: what the interventional radiologist needs to know[J]. CardioVascular and Interventional Radiology, 2017,40(8): 1131-1140.

7. Pyne CT, Gadey G, Jeon C, et al. Effect of reduction of the pulse rates of fluoroscopy and CINE-acquisition on X-ray dose and angiographic image quality during invasive cardiovascular procedures[J]. Circulation: Cardiovascular Interventions, 2014, 7(4): 441-446.

8. Ladouceur VB, Lawler PR, Gurvitz M, et al. Exposure to low-dose ionizing radiation from cardiac procedures in patients with congenital heart disease[J]. Circulation, 2016, 133(1): 12-20.

9. Ruiz-Cruces R, Vano E, Carrera-Magario F, et al. Diagnostic reference levels and complexity indices in interventional radiology: a national programme[J]. European Radiology, 2016, 26(12): 4268-4276.

10. Bartal G, Vano E, Paulo G, et al. Management of patient and staff radiation dose in interventional radiology: current concepts[J]. CardioVascular and Interventional Radiology, 2014, 37(2): 289-298.

11. Stecker MS, Balter S, Towbin RB. Guidelines for patient radiation dose management[J]. Journal of Vascular and Interventional Radiology, 2009, 20(suppl): S263–S273.

12. Silvain J, Cayla G, Collet JP, et al. Coronary stents: 30 years of medical progress[J]. Médecine Sciences: M/S, 2014, 30(3): 303-310.

13. Fetterly KA, Mathew V, Lennon R, et al. Radiation dose reduction in the invasive cardiovascular laboratory: Implementing a culture and philosophy of radiation safety[J]. JACC Cardiovascular Interventions, 2012, 5(8): 866–873.

14. Einstein AJ, Berman DS, Min JK, et al. Patient-centered imaging: shared decision making for cardiac imaging procedures with exposure to ionizing radiation[J]. Journal of the American College of Cardiology, 2014, 63(15): 1480-1489.

15. Vano E, Escaned J, Vano-Galvan S, et al. Importance of a patient dosimetry and clinical follow-up program in the detection of radiodermatitis after long percutaneous coronary interventions[J]. CardioVascular and Interventional Radiology, 2013, 36(2): 330-337.

16. Bordoli SJ, Carsten CG, Cull DL, et al. Radiation safety education in vascular surgery training[J]. Journal of Vascular Surgery, 2014, 59(3): 860-864.

17. Kordolaimi SD, Salvara ALN, Antonakos I, et al. Comparative performance evaluation of a flat detector and an image intensifier angiographic system both used for interventional cardiology procedures in adult and pediatric patients[J]. Physica Medica, 2013, 29(2): 178-187.

18. Jolly SS, Cairns J, Niemela K, et al. Effect of radial versus femoral access on radiation dose and the importance of procedural volume: a substudy of the multicenter randomized RIVAL trial[J]. JACC: Cardiovascular Interventions, 2013,6(3):258–266.

19. Hetherington SL, Adam Z, Morley R, et al. Primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction: changing patterns of vascular access, radial versus femoral artery[J]. Heart (British Cardiac Society), 2009, 95(19):1612–1618.

20. Kim J, Seo D, Choi I, et al. Development of diagnostic reference levels using a real-time radiation dose monitoring system at a cardiovascular center in Korea[J]. Journal of Digital Imaging, 2015, 28(6): 684-694.

21. Balter S, Miller DL. Patient skin reactions from interventional fluoroscopy procedures[J]. American Journal of Roentgenology, 2014, 202(4): W335-W342.

22. Durán A, Hian SK, Miller DL, et al. A summary of recommendations for occupational radiation protection in interventional cardiology[J]. Catheterization and Cardiovascular Interventions, 2013, 82(1):29–42.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com