[1] 中华医学会糖尿病分会糖尿病慢性并发症调查组.全国住院糖尿病患者慢性并发症及其相关危险因素10年回顾性调查分析[J].中国糖尿病杂志, 2003, 11 (4): 232-237. Investigation Group for Chronic Diabetic Complications, Chinese Diabetes Society, Chinese Medical Association. Chronic diabetic complications and related macro-vascular diseases of in-patients with diabetes in mainland of China—a national retrospective analysis in recent 10 years[J]. Chinese Journal of Diabetes, 2003, 11 (4): 232-237. [2] 刘卫,张勇进. 糖尿病性视网膜病变[J]. 国外医学眼科学分册, 2005, 29 (5): 352-357. [3] 李春芳, 丁小燕.糖尿病性视网膜病变的研究进展[J]. 新医学,2004, 35 (1): 9-10. [4] Massin P, Aubert JP, Eschwege E, et al. Evaluation of a screening program for diabetic retinopathy in a primary care setting Dodia (Dépistage ophtalmologique du diabète) study[J]. Diabetes & Metabolism, 2005, 31(2): 153-162. [5] 段彦华, 杨春兰, 刘冰. 糖尿病视网膜病变自动筛查方法研究进展[J]. 北京生物医学工程, 2016,35(3): 314-317. Duan YH, Yang CL, Liu B. Research development of automatic diabetic retinopathy screening[J]. Beijing Biomedical Engineering, 2016, 35(3): 314-317. [6]Mookiah MRK, Acharya UR, Chua CK, et al. Computer-aided diagnosis of diabetic retinopathy: a review[J]. Computers in Biology & Medicine, 2013, 43(12): 2136-2155. [7] Raja SS, Vasuki S. Screening diabetic retinopathy in developing countries using retinal images[J]. Applied Medical Informatics, 2015 ,36(1):13:22. [8]付浩祥, 周金长, 蔡多贤.分析比较不同筛查方法诊断糖尿病视网膜病变的价值[J].中国现代药物应用,2018, 12(12): 70-71. [9] 高玮玮,程武山,沈建新,等.免散瞳眼底图像在糖尿病视网膜病变自动筛查中的应用[J].激光生物学报,2015,24(4): 335-340, 381. Gao WW,Cheng WS,Shen JX, et al. Research of non-dilated fundus images for automated diabetic retinopathy screening[J]. Acta Laser Biology Sinica, 2015, 24(4): 335-340, 381. [10]全婵娟,王肖,杨新怀,等.免散瞳眼底彩色照在糖尿病视网膜病变社区远程筛查中的应用[J]. 中山大学学报(医学版),2018, 39(2): 298-302. Quan CJ, Wang X, Yang XH, et al. Application of non-mydriatic digital fundus camera in remote screen of diabetic retinopathy for community residents[J]. Journal of Sun Yat-Sen University (Medical Sciences), 2018, 39(2): 298-302. [11]李建军, 徐亮, 彭晓燕, 等.远程眼科单张眼底像质量标准(征求意见稿)[J].眼科,2015,24(1):11-12. [12]李亚标,王宝光,李温温.基于小波变换的图像纹理特征提取方法及其应用[J].传感技术学报,2009,22(9):1308-1311. Li YB, Wang BG, Li WW. A method of image texture feature analysis based on wavelet decomposition and its application[J]. Chinese Journal of Sensors and Actuators, 2009, 22(9): 1308-1311. [13]肖玉飞,刘祖润,李目.基于小波包能量熵与SVM的模拟电路故障诊断[J].电子测量技术,2011,34(6):110-113. Xiao YF, Liu ZR, Li M. Analog circuit fault diagnosis based on wavelet packet energy entropy and SVM[J]. Electronic Measurment Technology, 2011, 34(6):110-113. [14] 张健沛,赵莹,杨静.最小二乘支持向量机的半监督学习算法[J]. 哈尔滨工程大学学报, 2008, 29(10):1088-1092. Zhang JP, Zhao Y, Yang J. Semi-supervised learning algorithm with a least square support vector machine[J]. Journal of Harbin Engineering University, 2008, 29(10):1088-1092. [15]张学工. 关于统计学习理论与支持向量机[J].自动化学报, 2000, 26 (1): 32-42. Zhang XG. Introduction to statistical learning theory and support vector machines[J]. Acta Automactica Sinica, 2000, 26 (1):32-42. [16]阎威武, 邵惠鹤. 支持向量机和最小二乘支持向量机的比较及应用研究[J].控制与决策,2003,18(3):358-360. Yan WW. Shao HH. Application of support vector machines and least squares support vector machines to heart disease diagnoses[J]. Control and Decision, 2003,18(3): 358-360. [17]许莉莉, 师炜, 郭学谦,等. 基于最小二乘支持向量机的心音分类识别研究[J].中国医疗设备,2017,32(4): 38-41. Xu LL, Shi W, Guo XQ, et al. Heart sound recognition based on least squares support vector machines[J]. China Medical Devices, 2017,32(4): 38-41. [18]顾燕萍,赵文杰,吴占松. 最小二乘支持向量机的算法研究[J]. 清华大学学报(自然科学版), 2010,50(7): 1063-1066. Gu YP, Zhao WJ, Wu ZS. Least squares support vector machine algorithm[J]. Journal of Tsinghua University(Science and Technology), 2010,50(7): 1063-1066. [19]朱向荣,单杨,李高阳,等.基于最小二乘支持向量机的国公酒中橙皮苷含量测定[J]. 光谱学与光谱分析,2009,29(9): 2471-2474. Zhu XR, Shan Y, Li GY, et al. Determination of hesperidin content in guogongjiu medicinal wine based on NIR spectrometry and least squares support vector machines [J]. Spectroscopy and Spectral Analysis, 2009, 29(9): 2471-2474.
|