设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
辅助骨盆骨折复位的弹性牵引装置实验研究

Experimental study on elastic traction device to assist reduction of pelvic fracture

作者: 许珂  朱罡  王豫  樊瑜波  吴新宝  王军强  赵春鹏  孙旭 
单位:北京航空航天大学生物与医学工程学院(北京 100191) 北京航空航天大学生物医学工程高精尖创新中 心(北京100083) 北京积水潭医院(北京 100035)
关键词: 骨盆骨折;  骨折复位力;  弹性牵引;  骨盆复位;  生物力学 
分类号:R318.6
出版年·卷·期(页码):2019·38·2(126-133)
摘要:

目的 提出弹性牵引理论,即通过下肢弹性牵引装置平衡骨盆周围主要肌肉的阻力,利用弹性牵引装置中弹性体在牵引过程中产生的弹性形变提升医生复位操作过程中的灵活性,以此解决现有骨折复位机器人无法兼顾大负载与操作灵活性要求,并在搭建的骨盆骨折复位过程中肌肉约束力模拟平台上进行重复复位实验,以探究弹性牵引对骨盆骨折复位力及操作灵活性影响,为骨盆骨折复位手术机器人开发提供实验依据。方法 基于肌肉弹性体简化条件,搭建了模拟骨盆骨折复位过程中肌肉约束力的实验平台,模拟骨盆损伤状态下肌肉在复位过程中产生的阻力,并利用该模拟平台开展验证实验,测试比较了0 kg、5 kg、10 kg不同下肢弹性牵引条件下复位实验过程中复位力曲线,并对复位操作过程中复位力进行单因素误差分析及LSD事后多重检验分析,以此分析下肢弹性牵引装置对复位力大小的影响。最后,将患侧骨盆分别沿x、y方向平移3 cm,分析弹性牵引对平移操作灵活性的影响。结果弹性牵引可以显著减小复位操作力大小。在复位维持阶段,5 kg和10 kg弹性牵引使维持复位位置所需的把持力分别减小32.99%和60.85%(1号把持螺钉),以及31.06%和62.72%(2号把持螺钉)。在操作灵活性实验中,弹性牵引辅助下操作力相较于无弹性牵引时平均减小60%以上。结论 本研究初步验证了弹性牵引对辅助骨盆骨折复位的有效性,下肢弹性牵引可以有效减小复位操作过程中复位力的大小,并兼顾操作灵活性,同时有利于正确复位位置的稳定维持。

Objective  A new concept of elastic traction is proposed, which uses elastic traction to balance the force of soft tissues such as muscles, and the elastic deformation of the elastic traction device ensures the complex operations during reduction, which can meet the requirements of both large load and operation flexibility that the existing fracture reduction robot can not meet. Repeated pelvic reduction experiments are also carried out on the experimental platform of muscle force in the reduction process of pelvic fracture in order to explore the effect of elastic traction on reduction force and operation flexibility of pelvic fracture.  Methods  Based on the theory of simplified condition of muscle, the experimental platform of muscle force in the reduction process of pelvic fracture is set up to simulate the force of muscles during the reduction while pelvic fracture. We use the simulation platform to carry out the verification experiment, and record the reduction force curve under different conditions of lower limb elastic traction. And the single factor error analysis and LSD multiple test analysis of reset force during reset operation are carried out. In this way, the effect of elastic traction device for lower limb on reduction force is analyzed. Then, the affected pelvis is moved 3 cm along the direction of x and y, and the force curve is recorded to analyze the effect of elastic traction on the flexibility of translation. Results  The results of single factor error analysis and LSD multiple test show that elastic traction can significantly reduce the reduction force. Besides, the maintenance force of the No.1 reduction handle screw is reduced by 32.99% and 60.85%,and the force of the No.2 holding screw is also reduced by 31.06% and 62.72%. In the experiment of operation flexibility, the operating force under the assistance of elastic traction is reduced by more than 60% compared with that under the condition of non-elastic traction. Conclusions  This study preliminarily verifies the effectiveness of elastic traction. Lower limb elastic traction can effectively reduce the reduction force in the process of reduction, maintain the flexibility of operation, and do not affect the complex operation during reductions. At the same time, it helps to maintain the correct reset position.

参考文献:

[1]Collinge C, Coons D, Tornetta P, et al. Standard multiplanar fluoroscopy versus a fluoroscopically based navigation system for the percutaneous insertion of iliosacral screws: a cadaver model [J].Journal of Orthopaedic and Trauma,2005,19(4):254-258.

[2]Tachibana T,Yokoi H, Kirita M, et al. Instability of the pelvic ring and injury severity can be predictors of death in patients with pelvic ring fractures: a retrospective study[J].Journal of Orthopaedics and Traumatology,2009,10(2):79-82.

[3]Miller PR,Moore PS, Mansell E, et al. External fixation or arteriogram in bleeding pelvic fracture: initial therapy guided by markers of arterial hemorrhage[J].Journal of Trauma,2003,54(3):437-443.

[4]Pereira SJ,O’Brien DP, Luchette FA, et al. Dynamic helical computed tomography scan accurately detects hemorrhage in patients with pelvic fracture[J].Surgery,2000,128(4):678-685.

[5]Elabjer E,Nikolic'V,Matejcic'A,et al. Analysis of muscle forces acting on fragments in pelvic fractures[J].Collegium Antropologicum,2009,33(4):1095-1101.

[6]Kim WY,Ko SY,Park JO,et al. 6-DOF force feedback control of robot-assisted bone fracture reduction system using double F/Tsensors and adjustable admittances to protect bones against damage[J].Mechatronics,2016,35:136-147.

[7]Suero EM,Hartung T, Westphal R, et al. Improving the human-robot interface for telemanipulated robotic long bone fracture reduction: Joystick device vs. haptic manipulator[J].International Journal of Medical Robotics and Computer Assisted Surgery,2018,14(1):e1863.

[8]Wang L,Wang T, Li C, et al. Physical symmetry and virtual plane-based reduction reference: a preliminary study for robot-assisted pelvic fracture reduction[J].Journal of Mechanics in Medicine and Biology,2016,16(8):1640014.

[9]Lin H,Ma XL,Wang MY,et al. Robotic assisted pelvis fracture reduction[C]//CAOS International Conference.Osaka,Japan:CAOS,2016.

[10]Marcucci L,Reggiani C, Natali AN, et al. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers[J].Biomechanics and Modeling in Mechanobiology,2017,16(6):1833-1843.

[11]Cleworth DR,Edman KA. Changes in sarcomere length during isometric tension development in frog skeletal muscle[J].Journal of Physiology,1972,227(1):1-17.

[12]Virgilio KM,Martin KS,Peirce SM, et al. Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility[J].Interface Focus,2015,5(2):20140080.

[13]Phillips AT,Pankaj P,Howie CR,et al. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[J].Medical Engineering & Physics,2007,29(7):739-748.

[14]Tse KM,Robinson D,Franklyn M, et al. Parametric analysis on pelvic injury in an underbelly blast:a finite element study [C]//The 16th International Conference on Biomedical Engineering. Singapore:ICBME,2016.

[15]Bishop JA,Jr RM. Osseous fixation pathways in pelvic and acetabular fracture surgery: osteology, radiology, and clinical applications[J].The Journal of Trauma and Acute Care Surgery, 2012,72(6):1502-1509.

[16]徐九峰,韩巍,王军强,等.骨盆复位机器人试验研究[J] .中国 骨与关节外科杂志,2015,8(3):242-245.

Xu JF, Han W, Wang JQ, et al. Pelvic reduction robot: an experimental study [J].Chinese Journal of Bone and Joint Surgery,2015,8(3) :242-245

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com