[1]Dawn B, Tiwari S, Kucia MJ, et al. Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction.[J]. Stem Cells, 2010, 26(6):1646-1655. [2]Tatsumi T, Ashihara E, Yasui T, et al. Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction[J]. Circulation Journal, 2007, 71(8):1199-1207. [3]Madonna R, Petrov L, Teberino MA, et al. Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction[J]. Cardiovascular Research, 2015, 108(1):39-49. [4] Martens A, Rojas SV, Baraki H, et al. Substantial early loss of induced pluripotent stem cells following transplantation in myocardial infarction.[J]. Artificial Organs, 2015, 38(11):978-984. [5]Niu H, Mu J, Zhang J, et al. Comparative study of three types of polymer materials co-cultured with bone marrow mesenchymal stem cells for use as a myocardial patch in cardiomyocyte regeneration.[J]. Journal of Materials Science Materials in Medicine, 2013, 24(6):1535-1542. [6]Ma YX, Mu JS, Zhang JQ, et al. Myocardial Patch Formation by Three-Dimensional 3-Hydroxybutyrate-co-4-Hydroxybutyrate Cultured with Mouse Embryonic Stem Cells[J]. Journal of Biomaterials & Tissue Engineering, 2016, 6(8):629-634. [7]Miettinen JA, Salonen RJ, Ylitalo K, et al. The effect of bone marrow microenvironment on the functional properties of the therapeutic bone marrow-derived cells in patients with acute myocardial infarction[J]. Journal of Translational Medicine, 2012, 10(1):66-66. [8] Assmus B , Britten MB , et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: Final one-year results of the TOPCARE-AMI Trial[J]. Guangxi Medical Journal, 2004, 44(8):1690-1699. [9] Li RK, Weisel RD, Mickle DA G, et al. Autologous porcine heart cell transplantation improved heart function after a myocardial infarction [J]. Journal of Thoracic & Cardiovascular Surgery, 2000, 119(1):62-68. [10]Patel AN, Geffner L, Vina RF, et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study.[J]. Journal of Thoracic & Cardiovascular Surgery, 2005, 130(6):1631-1638. [11] Yau TM , Tomita S , Weisel RD , et al. Beneficial effect of autologous cell transplantation on infarcted heart function: comparison between bone marrow stromal cells and heart cells[J]. Annals of Thoracic Surgery, 2003, 75(1):169-177. [12]Sakai T, Li RK, Weisel RD, et al. Autologous heart cell transplantation improves cardiac function after myocardial injury.[J]. Annals of Thoracic Surgery, 1999, 68(6):2074-2080. [13]Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats.[J]. Journal of Applied Physiology, 2002, 92(1):288-296. [14] Taubenberger AV, Bray LJ, Haller B, et al. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.[J]. Acta Biomaterialia, 2016, 36:73-85. [15] Jung JP , José V Moyano, Collier JH . Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices[J]. Integrative Biology, 2011, 3(3):185-196. [16] Tibbitt MW, Anseth KS. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture[J]. Biotechnology & Bioengineering, 2010, 103(4):655-663. [17]Justice BA, Badr NA, Felder RA. 3D cell culture opens new dimensions in cell-based assays.[J]. Drug Discovery Today, 2009, 14(1):102-107 [18] Saito Y, Nakamura S, Hiramitsu M, et al. Microbial synthesis and properties of poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate)[J]. Polymer International, 2015, 39(3):169-174. [19] Sun XM, Zhong LH, Lan XP, et al. The Compatibility of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and Thermoplastic Polyurethane Blends[J]. Advanced Materials Research, 2013, 815:552-557. [20] Powers DE, Millman JR, Huang RB, et al. Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics[J]. Biotechnology & Bioengineering, 2010, 101(2):241-254. [21]Kurosawa H, Kimura M, Noda T, e`t al. Effect of oxygen on in vitro, differentiation of mouse embryonic stem cells[J]. Journal of Bioscience & Bioengineering, 2006, 101(1):26-30. [22]Choi JW, Kim KE, Lee CY, et al. Alterations in Cardiomyocyte Differentiation-Related Proteins in Rat Mesenchymal Stem Cells Exposed to Hypoxia[J]. Cellular Physiology & Biochemistry, 2016, 39(4):1595-1607. [23]Niebruegge S, Bauwens CL, Peerani R, et al. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor.[J]. Biotechnology and Bioengineering, 2009, 102(2):493-507. [24] Khan M, Kwiatkowski P, Rivera BK, et al. Oxygen and oxygenation in stem-cell therapy for myocardial infarction[J]. Life Sciences, 2010, 87(9):269-274. [25] Wei R, Yang J, Gao M, et al. Infarcted cardiac microenvironment may hinder cardiac lineage differentiation of human embryonic stem cells[J]. Cell Biology International, 2016, 40(11):1235-1246.
|