设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
低氧微环境对P(3HB-co-4HB)与小鼠骨髓间充质干细胞共培养形成心肌补片影响的实验研究

Experimental study on the effect of hypoxia microenvironment on the co-culture of P(3HB-co-4HB) and mouse bone marrow mesenchymal stem cells to form myocardial patch

作者: 田琨  穆军升  伯平  周帆 
单位:首都医科大学附属北京安贞医院心脏外科,北京市心肺血管疾病研究所(北京 100029) 解放军总医院第三医学中心超声科(北京 100039)
关键词: 低氧微环境;  P(3HB-co-4HB);  心肌补片;  心肌梗死 
分类号:R318.04
出版年·卷·期(页码):2019·38·3(227-234)
摘要:

目的 探究低氧微环境对小鼠骨髓间充质干细胞与P(3HB-co-4HB)材料共培养形成心肌补片的影响,为细胞移植术治疗心肌梗死提供一种更有效的心肌补片。方法 全骨髓培养法提取小鼠骨髓间充质干细胞(mMSCs),取5代mMSCs流式细胞术鉴定表面抗原。将聚3羟基丁酸酯-co-4羟基丁酸酯[3-hydroxybutyrate-co-4-hydroxybutyrate,P(3HB-co-4HB)]与小鼠骨髓间充质干细胞(mouse bone marrow mesenchymal stem cells,mMSCs)共培养制作成细胞补片,随机分为常氧组和低氧组,每组各10个样本,0、12、24 h分别用CCK-8法测定细胞增殖情况;扫描电子显微镜(scanning electron microscope,SEM)观察补片存活、黏附、生长情况。加入诱导剂5氮杂胞苷2周后,免疫荧光检测两组心肌肌钙蛋白T(cTnT)的表达情况。结果 在共培养24 h后,CCK-8法测定低氧组OD值(0.349±0.038)显著大于常氧组(0.308±0.025)(n=10,P<0.05),扫描电子显微镜观察到低氧组P(3HB-co-4HB)材料上细胞数量更多,细胞与材料之间的黏附牢固,细胞形态正常。免疫荧光显示低氧组cTnT表达比常氧组更加显著。结论 相对于常氧条件,低氧微环境可促进骨髓间充质干细胞在P(3HB-co-4HB)材料上的黏附、存活、增殖、分化,形成一种更有效的心肌补片。

Objective To investigate the effect of hypoxic microenvironment on the co-culture of mouse bone marrow mesenchymal stem cells with P(3HB-co-4HB) material to form a myocardial patch, and to provide a more effective myocardial for cell transplantation in the treatment of myocardial infarction. Methods Mouse bone marrow mesenchymal stem cells (mMSCs) were extracted by whole bone marrow culture. The surface antigens were identified by flow cytometry of 5 generations of mMSCs. 3-hydroxybutyrate-co-4-hydroxybutyrate (P(3HB-co-4HB)) and bone marrow mesenchymal stem cells (bone marrow mesenchymal stem cells, mMSCs) co-cultured into cell supplements, randomly divided into normoxia group and hypoxia group, each group of 10 samples, 0, 12, 24 hours to determine cell proliferation by CCK-8 method; scanning electron microscope (scanning Electron microscope (SEM) was used to observe the survival, adhesion and growth of the patch. Two weeks after the addition of the inducer 5-azacytidine, the expression of cardiac troponin T (cTnT) was detected by immunofluorescence. Results  After co-culture for 24 hours, the OD value of the hypoxic group measured by CCK-8 method (0.349±0.038) was significantly higher than that of the normoxic group (0.308±0.025) (n=10, P<0.05), which was observed by scanning electron microscopy. The number of cells in the oxygen group P(3HB-co-4HB) material is more, the adhesion between the cells and the material is firm, and the cell morphology is normal. Immunofluorescence showed that the expression of cTnT in the hypoxic group was more significant than in the normoxic group. Conclusions Compared with normoxic conditions, hypoxic microenvironment can promote the adhesion, survival, proliferation and differentiation of bone marrow mesenchymal stem cells on P(3HB-co-4HB) materials, and form a more effective myocardial patch.

参考文献:

[1]Dawn B, Tiwari S, Kucia MJ, et al. Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction.[J]. Stem Cells, 2010, 26(6):1646-1655.

[2]Tatsumi T, Ashihara E, Yasui T, et al. Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction[J]. Circulation Journal, 2007, 71(8):1199-1207.

[3]Madonna R, Petrov L, Teberino MA, et al. Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction[J]. Cardiovascular Research, 2015, 108(1):39-49.

[4] Martens A, Rojas SV, Baraki H, et al. Substantial early loss of induced pluripotent stem cells following transplantation in myocardial infarction.[J]. Artificial Organs, 2015, 38(11):978-984.

[5]Niu H, Mu J, Zhang J, et al. Comparative study of three types of polymer materials co-cultured with bone marrow mesenchymal stem cells for use as a myocardial patch in cardiomyocyte regeneration.[J]. Journal of Materials Science Materials in Medicine, 2013, 24(6):1535-1542. 

[6]Ma YX, Mu JS, Zhang JQ, et al. Myocardial Patch Formation by Three-Dimensional 3-Hydroxybutyrate-co-4-Hydroxybutyrate Cultured with Mouse Embryonic Stem Cells[J]. Journal of Biomaterials & Tissue Engineering, 2016, 6(8):629-634.

[7]Miettinen JA, Salonen RJ, Ylitalo K, et al. The effect of bone marrow microenvironment on the functional properties of the therapeutic bone marrow-derived cells in patients with acute myocardial infarction[J]. Journal of Translational Medicine, 2012, 10(1):66-66.

[8] Assmus B , Britten MB , et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: Final one-year results of the TOPCARE-AMI Trial[J]. Guangxi Medical Journal, 2004, 44(8):1690-1699.

[9] Li RK, Weisel RD, Mickle DA G, et al. Autologous porcine heart cell transplantation improved heart function after a myocardial infarction [J]. Journal of Thoracic & Cardiovascular Surgery, 2000, 119(1):62-68.

[10]Patel AN, Geffner L, Vina RF, et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study.[J]. Journal of Thoracic & Cardiovascular Surgery, 2005, 130(6):1631-1638.

[11] Yau TM , Tomita S , Weisel RD , et al. Beneficial effect of autologous cell transplantation on infarcted heart function: comparison between bone marrow stromal cells and heart cells[J]. Annals of Thoracic Surgery, 2003, 75(1):169-177.

[12]Sakai T, Li RK, Weisel RD, et al. Autologous heart cell transplantation improves cardiac function after myocardial injury.[J]. Annals of Thoracic Surgery, 1999, 68(6):2074-2080.

[13]Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats.[J]. Journal of Applied Physiology, 2002, 92(1):288-296.

[14] Taubenberger AV, Bray LJ, Haller B, et al. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.[J]. Acta Biomaterialia, 2016, 36:73-85.

[15] Jung JP , José V Moyano, Collier JH . Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices[J]. Integrative Biology, 2011, 3(3):185-196.

[16] Tibbitt MW, Anseth KS. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture[J]. Biotechnology & Bioengineering, 2010, 103(4):655-663.    

[17]Justice BA, Badr NA, Felder RA. 3D cell culture opens new dimensions in cell-based assays.[J]. Drug Discovery Today, 2009, 14(1):102-107

[18] Saito Y, Nakamura S, Hiramitsu M, et al. Microbial synthesis and properties of poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate)[J]. Polymer International, 2015, 39(3):169-174.

[19] Sun XM, Zhong LH, Lan XP, et al. The Compatibility of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and Thermoplastic Polyurethane Blends[J]. Advanced Materials Research, 2013, 815:552-557.

[20] Powers DE, Millman JR, Huang RB, et al. Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics[J]. Biotechnology & Bioengineering, 2010, 101(2):241-254.

[21]Kurosawa H, Kimura M, Noda T, e`t al. Effect of oxygen on in vitro, differentiation of mouse embryonic stem cells[J]. Journal of Bioscience & Bioengineering, 2006, 101(1):26-30.

[22]Choi JW, Kim KE, Lee CY, et al. Alterations in Cardiomyocyte Differentiation-Related Proteins in Rat Mesenchymal Stem Cells Exposed to Hypoxia[J]. Cellular Physiology & Biochemistry, 2016, 39(4):1595-1607.

[23]Niebruegge S, Bauwens CL, Peerani R, et al. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor.[J]. Biotechnology and Bioengineering, 2009, 102(2):493-507.

[24] Khan M, Kwiatkowski P, Rivera BK, et al. Oxygen and oxygenation in stem-cell therapy for myocardial infarction[J]. Life Sciences, 2010, 87(9):269-274.

[25] Wei R, Yang J, Gao M, et al. Infarcted cardiac microenvironment may hinder cardiac lineage differentiation of human embryonic stem cells[J]. Cell Biology International, 2016, 40(11):1235-1246.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com