设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
二巯基丁二酸修饰的Fe3O4纳米颗粒对人血管内皮细胞的作用研究

Study on the interactions of dimercaptosuccinic acid modified magnetite nanoparticles to human vascular endothelial cells

作者: 杜丽帆  张宇  杨爱云  温涛  刘健  孟洁  许海燕 
单位: 中国医学科学院基础医学研究所, 北京协和医学院基础学院(北京 100005) 东南大学生物科学与医学工程学院, 江苏省生物材料与器件重点实验室(南京 210096)
关键词: Fe3O4纳米颗粒;  内皮细胞;  吞噬;  血管内皮生长因子 
分类号:R318.08
出版年·卷·期(页码):2019·38·3(221-226)
摘要:

目的 研究二巯基丁二酸修饰的Fe3O4纳米颗粒(dimercaptosuccinic acid-magnetite nanoparticles,DMSA-Fe3O4)对人脐静脉内皮细胞(human umbilical vein endothelial cells, HUVECs)功能的影响。方法 利用动态光散射法表征DMSA-Fe3O4的粒径及表面电荷;采用普鲁士蓝染色、邻二氮菲铁定量和透射电镜观察方法研究HUVECs对DMSA-Fe3O4的摄取规律;利用细胞计数试剂盒(Cell Counting Kit-8, CCK-8)检测DMSA-Fe3O4对内皮细胞活性的影响;通过酶联免疫吸附试剂盒测定DMSA-Fe3O4对内皮细胞血管内皮生长因子(vascular endothelial growth factor, VEGF)分泌量的影响。结果 HUVECs能够大量吞噬DMSA-Fe3O4,其吞噬量具有孵育时间和剂量依赖性;短时间内所测剂量范围对细胞活性无显著影响,但长时间高剂量条件使细胞活性明显降低。此外,在高剂量DMSA-Fe3O4暴露下(200 μg/mL),内皮细胞分泌VEGF的量约为对照组的3倍。结论 DMSA-Fe3O4易于被HUVECs吞噬;高浓度DMSA-Fe3O4与HUVECs长时间培养使细胞活性降低,并刺激内皮细胞分泌VEGF。

Objective To investigate the interactions between dimercaptosuccinic acid modified Fe3O4 nanoparticles (DMSA-Fe3O4) and human umbilical vein endothelial cells (HUVECs).  Methods The particle size distribution and Zeta potential of DMSA-Fe3O4 were analyzed by dynamic light scattering. The cellular uptake of DMSA-Fe3O4 by HUVECs was measured with Prussian blue staining, phenanthroline and transmission electron microscopy observation. Cell Counting Kit-8 kit was used to determine the viability of DMSA-Fe3O4 treated endothelial cells. The secretion of vascular endothelial growth factor (VEGF) by the cells was quantifed by enzyme-linked immunosorbent assay kit.  Results Agglomerate nanoparticles were observed in the HUVECs cytoplasm, the cellular uptake of DMSA-Fe3O4 was time and dose dependent. The viability of HUVECs was not affected with 6-h incubation of DMSA-Fe3O4, while significantly decreased at 24-h and 48-h incubation. In addition, the endothelial cells secreted higher level of VEGF due to injury stress mediated by DMSA-Fe3O4.  Conclusions DMSA-Fe3O4 was easily uptaken by HUVECs, which inhibited the cell viability in high dose and long term, meanwhile induced HUVECs secret VEGF.

参考文献:

[1] Cao Y, Gong Y, Liu L, et al. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review[J].  Journal of Applied Toxicology, 2017, 37(12): 1359-1369.

[2] Singh D, Mcmillan JM, Kabanov AV, et al. Bench-to-bedside translation of magnetic nanoparticles[J]. Nanomedicine (Lond), 2014, 9(4): 501-516.

[3] Li X, Wei J, Aifantis KE, et al. Current investigations into magnetic nanoparticles for biomedical applications[J].  Journal of Biomedical Materials Research Part  A, 2016, 104(5): 1285-1296.

[4] Zhang L, Wang X, Zou J, et al. Effects of an 11-nm DMSA-coated iron nanoparticle on the gene expression profile of two human cell lines, THP-1 and HepG2[J]. Journal of Nanobiotechnology, 2015, 13(1): 3.

[5] Liu Y, Zou J, Wang X, et al. Effects of 2,3-dimercaptosuccinic acid-coated Fe3O4 nanoparticles on genes in two mouse cell lines[J]. Journal of Biomedical Nanotechnology , 2014, 10(8): 1574-1587.

[6] Liu Y, Wang J. Effects of DMSA-coated Fe3O4 nanoparticles on the transcription of genes related to iron and osmosis homeostasis[J].  Toxicological Sciences , 2013, 131(2): 521-36.

[7] Caldeira DF, Paulini F, Silva RC, et al. In vitro exposure of bull sperm cells to DMSA-coated maghemite nanoparticles does not affect cell functionality or structure[J]. International Journal of Hyperthermia, 2017, 34(4): 1-26.

[8] Trommer S, Leimert A, Bucher M, et al. Polyunsaturated Fatty Acids Induce ROS Synthesis in Microvascular Endothelial Cells[J]. Advances in Experimental Medicine and Biology, 2018, 1072: 393-397.

[9] Li J, Wang Y, Wang Y, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction[J]. Journal of Molecular & Cellular Cardiology, 2015, 86: 62-74.

[10] Huang G, Chen H, Dong Y, et al. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy[J]. Theranostics, 2013, 3(2): 116-26.

[11] Ranji-Burachaloo H, Gurr P A, Dunstan D E, et al. Cancer Treatment through Nanoparticle-Facilitated Fenton Reaction[J]. ACS Nano, 2018, 12(12): 11819-11837.

[12] Hu Z, Dong N, Lu D, et al. A positive feedback loop between ROS and Mxi1-0 promotes hypoxia-induced VEGF expression in human hepatocellular carcinoma cells[J]. Cell Signal, 2017, 31: 79-86.

[13] Garcia-Quintans N, Prieto I, Sanchez-Ramos C, et al. Regulation of endothelial dynamics by PGC-1alpha relies on ROS control of VEGF-A signaling[J]. Ffree Radical Biology and Medicine , 2016, 93: 41-51.

[14] 杨爱云, 温涛, 武昊安. 不同磁性纳米材料对血管内皮细胞作用的对比研究[J]. 北京生物医学工程, 2018, 37 (3):235-240. .

Yang AY, Wen T, Wu HA, et al. Comparative study of the effects of different magnetic nanomaterials on vascular endothelial cells [J]. Beijing Biomedical Engineering. 2018, 37(3): 235-240.

[15] Ge G, Wu H, Xiong F, et al. The cytotoxicity evaluation of magnetic iron oxide nanoparticles on human aortic endothelial cells[J]. Nanoscale Research Letters, 2013, 8(1): 215.

[16] Jin Y, Kaluza D, Jakobsson L. VEGF, Notch and TGFbeta/BMPs in regulation of sprouting angiogenesis and vascular patterning[J]. Biochemical Society Transactions, 2014, 42(6): 1576-1583.

[17] Sui H, Zhao J, Zhou L, et al. Tanshinone IIA inhibits beta-catenin/VEGF-mediated angiogenesis by targeting TGF-beta1 in normoxic and HIF-1alpha in hypoxic microenvironments in human colorectal cancer[J]. Cancer Letters, 2017, 403: 86-97.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com