[1] Cao Y, Gong Y, Liu L, et al. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review[J]. Journal of Applied Toxicology, 2017, 37(12): 1359-1369. [2] Singh D, Mcmillan JM, Kabanov AV, et al. Bench-to-bedside translation of magnetic nanoparticles[J]. Nanomedicine (Lond), 2014, 9(4): 501-516. [3] Li X, Wei J, Aifantis KE, et al. Current investigations into magnetic nanoparticles for biomedical applications[J]. Journal of Biomedical Materials Research Part A, 2016, 104(5): 1285-1296. [4] Zhang L, Wang X, Zou J, et al. Effects of an 11-nm DMSA-coated iron nanoparticle on the gene expression profile of two human cell lines, THP-1 and HepG2[J]. Journal of Nanobiotechnology, 2015, 13(1): 3. [5] Liu Y, Zou J, Wang X, et al. Effects of 2,3-dimercaptosuccinic acid-coated Fe3O4 nanoparticles on genes in two mouse cell lines[J]. Journal of Biomedical Nanotechnology , 2014, 10(8): 1574-1587. [6] Liu Y, Wang J. Effects of DMSA-coated Fe3O4 nanoparticles on the transcription of genes related to iron and osmosis homeostasis[J]. Toxicological Sciences , 2013, 131(2): 521-36. [7] Caldeira DF, Paulini F, Silva RC, et al. In vitro exposure of bull sperm cells to DMSA-coated maghemite nanoparticles does not affect cell functionality or structure[J]. International Journal of Hyperthermia, 2017, 34(4): 1-26. [8] Trommer S, Leimert A, Bucher M, et al. Polyunsaturated Fatty Acids Induce ROS Synthesis in Microvascular Endothelial Cells[J]. Advances in Experimental Medicine and Biology, 2018, 1072: 393-397. [9] Li J, Wang Y, Wang Y, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction[J]. Journal of Molecular & Cellular Cardiology, 2015, 86: 62-74. [10] Huang G, Chen H, Dong Y, et al. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy[J]. Theranostics, 2013, 3(2): 116-26. [11] Ranji-Burachaloo H, Gurr P A, Dunstan D E, et al. Cancer Treatment through Nanoparticle-Facilitated Fenton Reaction[J]. ACS Nano, 2018, 12(12): 11819-11837. [12] Hu Z, Dong N, Lu D, et al. A positive feedback loop between ROS and Mxi1-0 promotes hypoxia-induced VEGF expression in human hepatocellular carcinoma cells[J]. Cell Signal, 2017, 31: 79-86. [13] Garcia-Quintans N, Prieto I, Sanchez-Ramos C, et al. Regulation of endothelial dynamics by PGC-1alpha relies on ROS control of VEGF-A signaling[J]. Ffree Radical Biology and Medicine , 2016, 93: 41-51. [14] 杨爱云, 温涛, 武昊安. 不同磁性纳米材料对血管内皮细胞作用的对比研究[J]. 北京生物医学工程, 2018, 37 (3):235-240. . Yang AY, Wen T, Wu HA, et al. Comparative study of the effects of different magnetic nanomaterials on vascular endothelial cells [J]. Beijing Biomedical Engineering. 2018, 37(3): 235-240. [15] Ge G, Wu H, Xiong F, et al. The cytotoxicity evaluation of magnetic iron oxide nanoparticles on human aortic endothelial cells[J]. Nanoscale Research Letters, 2013, 8(1): 215. [16] Jin Y, Kaluza D, Jakobsson L. VEGF, Notch and TGFbeta/BMPs in regulation of sprouting angiogenesis and vascular patterning[J]. Biochemical Society Transactions, 2014, 42(6): 1576-1583. [17] Sui H, Zhao J, Zhou L, et al. Tanshinone IIA inhibits beta-catenin/VEGF-mediated angiogenesis by targeting TGF-beta1 in normoxic and HIF-1alpha in hypoxic microenvironments in human colorectal cancer[J]. Cancer Letters, 2017, 403: 86-97.
|