[1] 刘春全, 崔永. 肺结节评估四大指南比较分析[J]. 中国肺癌杂志, 2017, 20(7):490-498. Liu CQ, Cui Y. Lung nodules assessment—analysis of four guidelines[J]. Chinese Journal of Lung Cancer, 2017, 20(7):490-498. [2] Jemal A. Cancer statistics[J]. CA: A Cancer Journal for Clinicians, 2013, 52(5):1-24. [3] 张敏鸣. 孤立性肺结节影像学诊断原则与研究进展[J]. 放射学实践, 2007, 22(3):225-229. [4] 张刚, 马宗民. 一种采用Gabor小波的纹理特征提取方法[J]. 中国图象图形学报, 2010, 15(2):247-254. Zhang G, Ma ZM. An approach of using gabor wavelets for texture feature extraction[J]. Journal of Image and Graphics, 2010, 15(2):247-254. [5] 王瓛, 郭秀花, 李坤成,等. 良恶性肺小结节CT图像基于灰度共生矩阵10种纹理特征研究[J]. 北京生物医学工程, 2008, 27(6):561-564. Wang H, Guo XH, Li KC, et al. CT image 10 texture features of small solitary pulmonary nodules patients using gray level co-occurrence matrix[J]. Beijing Biomedical Engineering, 2008, 27(6):561-564. [6] 王晶晶, 孙涛, 赵枫朝,等. 支持向量机在肺结节CT图像中的应用[J]. 北京生物医学工程, 2013, 32(5):528-530. Wang JJ, Sun T, Zhao FC, et al. Application of support vector machine for pulmonary nodules in CT image[J]. Beijing Biomedical Engineering, 2013, 32(5):528-530. [7] Sobieranski AC, Linhares RTF, Comunello E, et al. A fast gabor filter approach for multi-channel texture feature discrimination[M]//Martin CS,Kim SW. Progress in pattern recognition, image analysis, computer vision, and applications. London:Springer International Publishing, 2014:135-142. [8] Daugman JG. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[J]. Journal of the Optical Society of America A Optics & Image Science, 1985, 2(7):1160-9. [9] Jones JP, Palmer LA. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex[J]. Journal of Neurophysiology, 1987, 58(6):1233-1258. [10] Liu SL, Niu ZD, Sun G, et al. Gabor filter-based edge detection: A note[J]. Optik - International Journal for Light and Electron Optics, 2014, 125(15):4120-4123. [11] Zhu Y, Tan Y, Hua Y, et al. Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography[J]. Journal of Digital Imaging, 2010, 23(1):51-65. [12] 胡强, 郝晓燕, 雷蕾. 基于遗传算法和BP神经网络的孤立性肺结节分类算法[J]. 计算机科学, 2016, 43(6A):37-40. Hu Q, Hao XY, Lei L. Solitary pulmonary nodules classification based on genetic algorithm and back propagation neural networks[J]. Computer Science, 2016, 43(6A) :37-40. [13] 纪国华, 赵涓涓, 潘玲.基于改进自生成神经网络的孤立性肺结节分类[J]. 太原理工大学学报,2015,(6):754-759. Guohua JI, Zhao J, Pan L. Solitary pulmonary nodule classification based on improved self-generating neural networks[J]. Journal of Taiyuan University of Technology, 2015,(6):754-759. [14] Mleczko WK, Kapu?ciński T, Nowicki RK. Rough deep belief network - application to incomplete handwritten digits pattern classification[M]// Information and Software Technologies.London: Springer International Publishing, 2015:400-411. [15] Han F, Zhang G, Wang H, et al. A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database[C]// 2013 IEEE International Conference on Medical Imaging Physics and Engineering. Shengyang:IEEE, 2014:14-18. [16] 巩萍, 王姗姗, 罗举建. 基于稀疏自编码神经网络的肺结节特征提取及良恶性分类[J]. 医疗卫生装备, 2015, 36(12):7-10. Gong P, Wang SS, Luo JJ. Feature extraction and benign or malignant classification of lung nodules based on sparse auto-encoder neural networks[J]. Chinese Medical Equipment Journal, 2015, 36(12):7-10. [17] Raicu DS, Varutbangkul E, Cisneros JG, et al. Semantics and image content integration for pulmonary nodule interpretation in thoracic computed tomography[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2007, 6512:65120S-65120S-12. [18] Li W, Mao KZ, Zhang H, et al. Designing compact Gabor filter banks for efficient texture feature extraction[C]// International Conference on Control Automation Robotics & Vision. IEEE, 2011:1193-1197. [19] Bianconi F, Fernández A. Evaluation of the effects of Gabor filter parameters on texture classification[J]. Pattern Recognition, 2007, 40(12):3325-3335. [20] 王毅翔,邓敏. 孤立性肺结节的循证医学影像处理[J]. 临床与病理杂志, 2015, 35(2):169-174. [21] 张春霞, 姬楠楠, 王冠伟. 受限波尔兹曼机[J]. 工程数学学报, 2015(2):159-173. Zhang CX, Ji NN, Wang GW. Restricted boltzmann machines[J]. Chinese Journal of Engineering Mathematics, 2015(2):159-173. [22] 周树森. 基于深度置信网络的分类方法[D]. 哈尔滨:哈尔滨工业大学, 2012. Zhou SS. Deep belief networks based classification methods[D]. Harbin :Harbin Institute of Technology, 2012. [23] 聂生东, 邱建峰, 郑建立,等. 医学图像处理[M].上海:复旦大学出版社, 2010:192-193. Nie SD, Qiu JF, Zheng JL, et al. Medical image processing[M], Shanghai:Fudan University Press, 2010:192-193.
|