设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
α-CSH / NC 复合植骨材料的理化性质研究

Study on the physicochemical properties of α-CSH/NC composite bone graft

作者: 刘金龙  刘相成  张阿丽  迟志永 
单位:第80集团军医院(山东潍坊 261042) 哈尔滨医科大学附属第一医院(哈尔滨 150001)
关键词: α-硫酸钙;  纳米纤维素;  植骨材料;  理化性质 
分类号:R318.08
出版年·卷·期(页码):2019·38·3(298-302)
摘要:

目的 利用纳米纤维素(nanocellulose,NC)的材料特性,增强α-硫酸钙(α-calcium sulphate hemihydrate,α-CSH)的结构稳定性,以获取理化性质更加优异的复合植骨材料。方法 以α-CSH为基质,按照NC在复合材料中所占比例0%、1%、2%、3%、4%、5%、7.5%、10%(质量分数)分别制作复合植骨材料,测定其力学强度、密度、代谢速率等理化性能,并行XRD分析以及扫描电镜观察。结果NC能够显著增强α-CSH的力学性能,使其抗压强度达34.87 MPa±2.08MPa,并且使植骨材料密度降低,代谢时间延长。XRD分析示制备过程中无其他物质产生,对其转化产物分析示NC对α-CSH的转化过程无影响。扫描电镜观察可见NC穿梭于晶体空隙之间,形成三维网络结构,并同晶体结构牢固结合。结论NC能够显著增强α-CSH的理化性质,使其更加复合临床植骨需求。

Objective Addition of the nanocellulose (NC) can reinforce the structural stability of α-calcium sulphate hemihydrate (α-CSH), thereby improving the physicochemical properties of composite materials for bone grafts. Methods The bone grafts were fabricated according to the content of NC (0%, 1%, 2%, 3%, 4%, 5%, 7.5% and 10 wt%, respectively) in the α-CSH matrix, and physicochemical properties such as the mechanical strength, density and metabolic rate were tested. In addition, X-ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM) were used for further characterizations. Results It was found that NC had noticeably improved the mechanical properties of α-CSH (the compressive strength was up to 34.87 MPa±2.08 MPa), reduced the density of bone grafts, and extend the metabolic time. The XRD results showed no new phases formed during the fabrication process, which meant NC showed no effect on the α-CSH transformation process. From the SEM results, NC travelled in the vacancies in the crystal and formed solid three dimensional network structure. Conclusions NC can significantly strengthen the physicochemical properties of α-CSH, which better meets the demand for clinical bone grafting.

参考文献:

1. Chung HJ, Hur JW, Ryu KS, et al. Surgical outcomes of anterior cervical fusion using deminaralized bone matrix as stand-alone graft material: single arm, pilot study[J]. Korean Journal of Spine ,2016,13(3): 114–119.

2.Beuerlein MJS and McKee MD. Calcium sulfates: what is the evidence?[J]. Journal of Orthopaedic Trauma,2010, 24:S46–S51.

3. Campana V, Milano G, Pagano E, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice[J]. Journal of Materials Science: Materials in Medicine, 2014,25(10): 2445–2461.

4. Thomas MV , Puleo DA. Review calcium sulfate: properties and clinical applications[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials ,2009,88(2):597-610.

5. Lewis K N, Thomas M V, Puleo D A. Mechanical and degradation behavior of polymer-calcium sulfate composites [J]. Journal of Materials Science: Materials in Medicine,2006, 17(6): 531-537.

6.Halib N, Perrone F, Cemazar M, et al. Potential applications of nanocellulose-containing materials in the biomedical field[J]. Materials,2017,10(8):977.

7.Klemm D, Kramer F, Moritz s, et al. nanocelluloses: a new family of nature-based materials[J]. Angewandte chemie, 2011,50(24):5438-5466.

8. 林凤采, 卢麒麟,卢贝丽等:纳米纤维素及其聚合物纳米复合材料的研究进展[J].化工进展,2018,37(9)3454-3470.

Lin FC, Lu QL, Lu Bl, et al. Research progress of nanocellulose and its polymer nanocomposites[J]. Chemical Industry and Engineering Progress, 2018,37(9):3454-3470.

9. Tayeb AH, Amini E, Ghasemi S, et al. Cellulose nanomaterials—binding properties and applications: a review[J]. Molecules,2018, 23(10): 2684.

10. Dreesman H. Uber Knochenplombierung[J]. Beitr Klin Chir, 1892,9: 804–810.

11. P Laycock, J Cooper, R Howlin,et al. In vitro efficacy of antibiotics released from calcium sulfate bone void filler beads[J]. Materials (Basel), 2018, 11(11): 2265.

12.  Pf?rringer  D, Obermeier  A, Kiokekli M, et al. Antimicrobial formulations of absorbable bone substitute materials as drug carriers based on calcium sulfate[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(7): 3897–3905.

13. Chai F, Raoul G, Wiss A, et al. Bone substitutes: classificationand concerns[J]. Revue de Stomatologie et de Chirurgie Maxillo-faciale ,2011,112(4): 212–221.

14. Blaha JD. Evolving technologies: new answers or new problems? Calcium sulfate bone void filler[J]. Orthopedics, 1998, 21(9): 1017–1019.

15. Yi X,Wang Y, Lu H et al. Augmentation of pedicle screw fixation strength using an injectable calcium sulfate cement: an in vivo study[J]. Spine,2008, 33﹙23﹚: 2503-2509.

16. 毛克亚,李江涛,杨云等,β-TCP/α-CSH复合植骨材料的制备与理化性能检测[J].生物医学工程与临床,2011,15(3):205-209.

Mao KY,L I JT, Yang Yun, et al. Preparation and characterization of β-TCP/α-CSH composite bone graft[J]. Biomedical Engineering and Clinical Medicine, 2011,15(3):205-209.

17.Melo LG, Nagata MJ, Bosco AF, et al. Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. A histological and histometric study in rat tibias[J]. Clinical Oral Implants Research, 2005,16:683–691.

18. 黄彪,卢麒麟,唐丽荣. 纳米纤维素的制备及应用研究进展[J].林业工程学报,2016,1(5):1-9.

Huang B, Lu QL, Tang LR, Research progress of nanaocelluse manufacture and application[J]. Jouranl of Forestry Engineering,2016,1(5):1-9.

19. 高艳红,石瑜,田超等,微纤化纤维素及其制备技术的研究进展[J].化工进展,2017,36(1):232-246.

Gao YH, Shi Y, Tian C, et al. Properties and preparation progress of microfibrillated cellulose:a review[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 232-246.

20. Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Cheminform,2011, 42: 3941-3994.

21.Capadona JR, Van DBO, Capadona LA, et al. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates[J]. Nature Nanotechnology, 2007, 2(12): 765-769.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com