[1] Pan X, Rijnbeek P, Yan J, et al. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks[J]. BMC Genomics, 2018,19:511. [2] Adjeroh D, Allaga M, Tan J, et al. Feature-based and string-based models for predicting RNA-protein interaction[J]. Molecules, 2018,23(3): E697. [3] Suresh V, Liu L, Adjeroh D, et al. RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information[J]. Nucleic Acids Research, 2015,43(3):1370-1379. [4] Zhang SW, Fan XN. Computational methods for predicting ncRNA-protein interactions[J]. Medicinal Chemistry, 2017, 13(6):515-525. [5] Cook KB, Vembu S, Ha KCH, et al. RNAcompete-S: combined RNA sequence/structure preferences for RNA binding proteins derived from a single-step in vitro selection[J]. Methods, 2017,126:18-28. [6] Muppirala UK, Honavar VG, Dobbs D. Predicting RNA-protein interactions using only sequence information[J]. BMC Bioinformatics, 2011,12:489. [7] Wang Y, Chen X, Liu ZP, et al. De novo prediction of RNA-protein interactions from sequence information[J]. Molecular Biosystems, 2013, 9(1):133-142. [8] Pan X, Fan YX, Yan J, et al. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction[J]. BMC Genomics, 2016,17:582. [9] 张凯宇. 基于深度学习的蛋白质-RNA相互作用预测模型构建[D]. 中国人民解放军军事医学科学院, 2017. Zhang KY. Construction of prediction model for protein-RNA interaction using the deep learning methods[D]. Academy of Military Medical Sciences, 2017. [10] Hu H, Zhang L, Ai H, et al. HLPI-ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy[J]. RNA Biology, 2018,15(6):797-806. [11] Alipanahi B, Delong A, Weirauch MT, et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning[J]. Nature Biotechnology, 2015,33(8):831-838. [12] Zeng X, Leung MR, Zeev-Ben-Mordehai T, et al. A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation[J]. Journal of Structural Biology, 2017,202(2):150-160. [13] Kroll C,von der Werth MVD, Leuck H, et al. Combining high-speed SVM learning with CNN feature encoding for real-time target recognition in high-definition video for ISR missions[C]//Society of Photo-optical Instrumentation Engineers 10202, Automatic Target Recognition XXVII. Anaheim, California, US, 2017:1020208. [14] Xia Y, Yang X, Zhang Y. A rejection inference technique based on contrastive pessimistic likelihood estimation for P2P lending[J]. Electronic Commerce Research and Applications, 2018, 30:111-124. [15] Qi Y, Klein-Seetharaman J, Bar-Joseph Z. Random forest similarity for protein-protein interaction prediction from multiple sources[J]. Pacific Symposium on Biocomputing, 2005,10:531-542. [16] Chen T, Guestrin C. XGBoost: a scalable tree boosting system[C]//the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2016. [17] Lu Q, Ren S, Lu M, et al. Computational prediction of associations between long non-coding RNAs and proteins[J]. BMC Genomics, 2013,14: 651.
|