[1] Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysisof kinase inhibitor selectivity[J]. Nature Biotechnology, 2011, 29(11):1046-1051. [2] 刘博雅, 贺福初, 王建. 蛋白质翻译后修饰对STAT家族活性的调节[J]. 生命科学, 2013(3):275-279. Liu BY, He FC, Wang J. The regulation of STAT activity by post-translational modifications[J]. Chinese Bulletin of Life Sciences, 2013(3):275-279. [3] Kim JH, Lee J, Oh B, et al. Prediction of phosphorylation sites using SVMs[J]. Bioinformatics, 2004,20(17): 3179-3184. [4] Wong YH, Lee TY, Liang HK, et al. KinasePhos 2.0: a webserver for identifying protein kinase-specific phosphorylation sites basedon sequences and coupling patterns[J]. Nucleic Acids Research, 2007, 35(Web Server issue):588-594. [5] Blom N, Sicheritz-Pontén T, Gupta R, et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence[J]. Proteomics, 2004, 4(6):1633-1649. [6] Xue Y, Li A, Wang L, et al. PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory[J]. BMC Bioinformatics, 2006, 7:163. [7] Wang MH, Li CH, Chen WZ, et al.Prediction of PK-specificphosphorylation site based oninformation entropy[J]. Science in China Series C: Life Sciences, 2008, 51(1): 12-20. [8] Xue Y, Ren J, Gao X, et al. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy[J]. Molecular & Cellular Proteomics, 2008, 7(9): 1598-1608. [9] Diella F, Gould CM, Chica C, et al. Phospho.ELM: a database of phosphorylation sites-update[J]. Nucleic Acids Research, 2008, 36(suppl 1):D240-D244. [10] Wang L, Chen C, Zhou J, et al. Time-sensitive customer churn prediction based on PU learning[J]. 2018. [11] Yamazaki K. Accuracy analysis of semi-supervised classification when the class balance changes[J]. Neurocomputing, 2015, 160:132-140. [12] Zou L, Wang M, Shen Y, et al. PKIS: computational identification of protein kinases for experimentally discovered protein phosphorylation sites[J]. BMC Bioinformatics, 2013, 14(1):247. [13] Linding R, Jensen LJ, Pasculescu A, et al. NetworKIN: a resource for exploring cellular phosphorylation networks[J]. Nucleic Acids Research,2008, 36(suppl 1):D695-699. [14] Chen X, Shi SP, Suo SB, et al. Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveals subcellular specificity[J]. Bioinformatics, 2015 31(2):194-200. [15] Ismail HD, Jones A, Kim JH, et al. Phosphorylation sites prediction using random forest[C]// 5th IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). Miami, FL, USA, 2015:1-6. [16] Li H, Xu X, Feng H, et al. A novel kinase-substrate relation prediction method based on substrate sequence similarity and phosphorylation network[J]. IFAC PapersOnLine, 2015, 48(28):17-21. [17] Patrick R, Horin C, Kobe B, et al. Prediction of kinase-specific phosphorylation sites through an integrative model of protein context and sequence[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2016, 1864(11):1599-1608. [18] Kaushik AC, Pal A, Kumar A, et al. Internal transcribed spacer sequence database of plant fungal pathogens: PFP-ITSS Database[J]. Informatics in Medicine Unlocked, 2017, 7: 34-38.
|