设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
蚁群优化算法构建乳腺癌中miRNA调控的关键基因互作网络

Construction of key gene interaction network of miRNA regulation in breast cancer by ant colony optimization

作者: 张蕴显  王雅梅  周萍 
单位:首都医科大学生物医学工程学院(北京 100069) 首都医科大学基础医学院(北京 100069)
关键词: 生物信息学;  基因互作网络;  富集分析;  蚁群算法;  乳腺癌 
分类号:R318
出版年·卷·期(页码):2019·38·4(369-376)
摘要:

目的 筛选ER阳性乳腺癌中受miRNA调控的关键基因,以此构建乳腺癌中miRNA-mRNA互作网络,进而了解ER阳性乳腺癌的调控机制,为筛选ER阳性乳腺癌诊断预后的生物标志物和治疗靶点打下基础。方法 利用MCF-7细胞系的AGO-IP(HITS-CLIP Protocol for Argonaute)高通测序实验数据,发现miRNA对mRNA的真实调控关系,并以此构建基于miRNAs诱导的沉默复合体(RISCs)miRNA-mRNA调控模组。根据调控模组利用蚁群优化算法在基因互作网络中筛选关键基因,构建ER阳性乳腺癌中miRNA调控下的关键基因互作网络,并对关键基因进行功能分析。结果 本研究筛选出106个关键基因,244个调控关键基因的miRNA。根据乳腺癌中miRNA调控的关键基因互作网络识别出了YWHAG、EP300、CHEK1、SMAD2、SMAD1、SYK、FGFR1、PIK3R2、IRS1、TGFBR2、CHUK和CSDE1等12个hub基因;并发现了hsa-miR-940、hsa-miR-545-3p、hsa-miR-3065-5p、hsa-miR-15a-5p、hsa-miR-181b-5p、hsa-miR-16-5p、hsa-miR-765、hsa-miR-4723-5p、hsa-miR-454-3p、hsa-miR-374a-5p、hsa-miR-34a-5p、hsa-miR-30e-5p、hsa-miR-19a-3p、hsa-miR-15b-5p、hsa-miR-149-5p和hsa-miR-128-3p等16个hub miRNA。这些基因主要对肿瘤细胞的增殖、侵袭、化疗抗性、放疗抗性和耐药性起重要作用。结论 本研究筛选出关键基因及调控关键基因的miRNA对ER阳性乳腺癌的耐药性、化疗抗性、放疗抗性及肿瘤细胞的增殖、侵袭起到了重要调控作用,对ER阳性乳腺癌临床治疗及预后起到重要参考作用。

Objective To screen the key genes regulated by miRNA in ER+ breast cancer, and construct the miRNA-mRNA interaction network in breast cancer, so as to understand the regulatory mechanism of ER+ breast cancer, and lay the foundation for screening the biomarkers and treatment targets of ER+ breast cancer for diagnosis and prognosis. Methods By using the high-pass sequencing data of AGO-IP (HITS-CLIP Protocol for Argonaute) of MCF-7 cell line, we found the real relationship between miRNA and mRNA, and constructed a miRNA-mRNA regulatory module based on microRNAs-induced silencing complex (RISCs). According to the regulation module, ant colony optimization algorithm was used to screen key genes in gene interaction network, and constructed the key gene interaction network under the regulation of miRNA in ER+ breast cancer, and analyzed the function of key genes. Results In this study, 106 key genes and 244 microRNAs regulating key genes were screened. Twelve hub genes, including YWHAG, EP300, CHEK1, SMAD2, SMAD1, SYK, FGFR1, PIK3R2, IRS1, TGFBR2, CHUK, CSDEE1, and 16 hub miRNAs, including hsa-miR-940, hsa-miR-545-3p, hsa-miR-3065-5p, hsa-miR-15a-5p, hsa-miR-181b-5p, hsa-miR-16-5p, hsa-miR-765, hsa-miR-4723-5p, hsa-miR-454-3p, hsa-miR-374a-5p, hsa-miR-34a-5p, hsa-miR-30e-5p, hsa-miR-19a-3p, hsa-miR-15b-5p, sa-miR-149-5p, hsa-miR-128-3p, were identified according to the key gene interaction network regulated by miRNA in breast cancer. These genes played an important role in the proliferation, invasion, chemotherapy resistance, radiotherapy resistance and drug resistance of cancer cells. Conclusions In this study, we screened out the key genes and the miRNA that regulated the key genes, which played an important role in the regulation of ER+ breast cancer resistance, chemotherapy resistance, radiotherapy resistance, proliferation and invasion of cancer cells. It also played an important reference role in the clinical treatment and prognosis of ER+ breast cancer.

参考文献:

[1]        Cheng Y, Yan Y, Gong J, et al. Trends in incidence and mortality of female breast cancer during transition in Central China[J]. Cancer Management and Research, 2018, 10: 6247-6255.

[2]        刘文静,毛艳,王海波.乳腺癌新辅助治疗的进展[J].临床外科杂志,2018,26(1):73-76.

Liu WJ, Mao Y, Wang HB. Progress and challenge of neoadjuvant therapy for breast cancer[J]. Journal of Clinical Surgery, 2018,26(1):73-76.

[3]        Li X, Dai D, Chen B, et al. Efficacy of PI3K/AKT/mTOR pathway inhibitors for the treatment of advanced solid cancers: A literature-based meta-analysis of 46 randomised control trials[J]. PLoS One, 2018, 13(2): e0192464.

[4]        Pillai MM, Gillen AE, Yamamoto TM, et al. HITS-CLIP reveals key regulators of nuclear receptor signaling in breast cancer[J]. Breast Cancer Research and Treatment, 2014, 146(1): 85-97.

[5]        Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003,13(11): 2498-2504.

[6]        Alcaraz N, List M, Dissing-Hansen M, et al. Robust de novo pathway enrichment with KeyPathwayMiner 5[J]. F1000Res, 2016, 5: 1531.

[7]        Wang X. Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-ligation studies[J]. Bioinformatics, 2016, 32(9):1316-1322.

[8]        宋瑞华,王宏伟,薛强飞.基于优化蚁群算法的图像边缘检测改进算法[J].电子测量技术,2013,36(8):56-60.

Song RH, Wang HW, Xue QF. Detecting edge of images based on optimized ant colony algorithm[J]. Electronic Measurement Technology, 2013, 36(8):56-60.

[9]        胡小兵,黄席樾.蚁群优化算法及其应用[J].计算机仿真,2004,21(5):81-85.

Hu XB, Huang XY. Ant colony optimization algorithm and its application[J]. Computer Simulation, 2004,21(5):81-85.

[10]      Li M. Efficiency improvement of ant colony optimization in solving the moderate LTSP[J]. Journal of Systems Engineering and Electronics, 2015, 26(6): 1300-1308.

[11]      Alcaraz N, Pauling J, Batra R, et al. KeyPathwayMiner 4.0: condition-specific pathway analysis by combining multiple omics studies and networks with Cytoscape[J]. BMC Systems Biology, 2014, 8: 99.

[12]      Alcaraz N, Friedrich T, K?tzing T, et al. Efficient key pathway mining: combining networks and OMICS data[J]. Integrative Biology (Camb), 2012, 4(7): 756-764.

[13]      Vanhaesebroeck B, Leevers SJ, Ahmadi K, et al. Synthesis and function of 3-phosphorylated inositol lipids[J]. Annual Review of Biochemistry, 2001, 70: 535-602.

[14]      Zhao W, Sun M, Li S, et al. Transcription factor ATF3 mediates the radioresistance of breast cancer[J]. Journal of Cellular and Molecular Medicine, 2018, 22(10): 4664-4675.

[15]      Xiao J, Lin HY, Zhu YY, et al. MiR-126 regulates proliferation and invasion in the bladder cancer BLS cell line by targeting the PIK3R2-mediated PI3K/Akt signaling pathway[J]. OncoTargets and Therapy, 2016, 9: 5181-5193.

[16]      Samanta D, Datta PK. Alterations in the Smad pathway in human cancers[J]. Frontiers in Bioscience(Landmark Edition), 2012, 17(1):1281-1293.

[17]      Zhuang J, Shen L, Yang L, et al. TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer[J]. Theranostics, 2017, 7(12): 3053-3067.

[18]      Wang P, Deng Y, Fu X. MiR-509-5p suppresses the proliferation, migration, and invasion of non-small cell lung cancer by targeting YWHAG[J]. Biochemical and Biophysical Research Communications, 2017, 482(4): 935-941.

[19]      Yoo JO, Kwak SY, An HJ, et al. miR-181b-3p promotes epithelial-mesenchymal transition in breast cancer cells through Snail stabilization by directly targeting YWHAG[J]. Biochimica et Biophysica Acta, 2016, 1863(7 Pt A): 1601-1611.

[20]      Attar N, Kurdistani SK. Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer[J]. Cold Spring Harbor Perspectives in Medicine, 2017, 7(3).

[21]      Asaduzzaman M, Constantinou S, Min H, et al. Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer[J]. Breast Cancer Research and Treatment, 2017, 163(3): 461-474.

[22]      Hashimoto K, Ochi H, Sunamura S, et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2204-2209.

[23]      Rajendiran S, Parwani AV, Hare RJ, et al. MicroRNA-940 suppresses prostate cancer migration and invasion by regulating MIEN1[J]. Molecular Cancer, 2014, 13: 250.

[24]      Leung YK, Chan QK, Ng CF, et al. Hsa-miRNA-765 as a key mediator for inhibiting growth, migration and invasion in fulvestrant-treated prostate cancer[J]. PLoS One, 2014, 9(5): e98037.

[25]      Gu Y, Zhang M, Peng F, et al. The BRCA1/2-directed miRNA signature predicts a good prognosis in ovarian cancer patients with wild-type BRCA1/2[J]. Oncotarget, 2015, 6(4):2397-2406.

[26]      Xie G, Ke Q, Ji YZ, et al. FGFR1 is an independent prognostic factor and can be regulated by miR-497 in gastric cancer progression[J]. Brazilian Journal of Medical and Biological Research, 2019, 52(1): e7816.

[27]      Liu JJ, Zhang X, Wu XH. miR-93 promotes the growth and invasion of prostate cancer by upregulating its target genes TGFBR2, ITGB8, and LATS2[J]. Molecular Therapy Oncolytics, 2018, 11: 14-19.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com