[1] 章轶立, 魏戌, 申浩, 等. 骨质疏松性骨折诊断技术与风险预测工具研究进展[J]. 中国骨质疏松杂志, 2018,24(5):676-680. Zhang YL, Wei X, Shen H, et al. Advances in diagnostic techniques and risk prediction tools for osteoporotic fractures[J]. Chinese Journal of Osteoporosis, 2018,24(5):676-680. [2] 蔡淑芬, 邢其丹, 丰吉南, 等. 老年类风湿关节炎患者发生骨质疏松的危险因素分析 [J]. 中国骨质疏松杂志, 2018,24(7):922-925, 939. Cai SF, Xing QD, Feng JN, et al. Analysis of the risk factors of osteoporosis in elderly patients with rheumatoid arthritis[J]. Chinese Journal of Osteoporosis, 2018, 24(7):922-925, 939. [3] 郑煜晖, 吴世强, 庄华峰. 老年骨质疏松患者骨代谢指标、骨密度与骨质疏松性骨折的相关性[J]. 中国老年学杂志, 2017,37(23):5920-5922. [4] 章轶立, 魏戌, 聂佩芸, 等. 基于Group Lasso的Logistic回归模型构建绝经后骨质疏松性骨折初发风险评估工具[J]. 中国骨质疏松杂志, 2018,24(8):994-999,1028. Zhang YL, Wei X, Nie PY, et al. Establishment of risk assessment tool for postmenopausal osteoporotic fractures based on Group Lasso's logistic regression model[J]. Chinese Journal of Osteoporosis, 2018,24(8):994-999,1028. [5] Taylor KC, Evans DS, Edwards DRV, et al. A genome-wide association study meta-analysis of clinical fracture in 10,012 African American women[J]. Bone Reports, 2016, 5: 233-242. [6] Kilic N, Hosgormez E. Automatic estimation of osteoporotic fracture cases by using ensemble learning approaches[J]. Journal of Medical Systems, 2016, 40(3):61. [7] Friedman JH. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38(4):367-378. [8] Guo Y, Wang JT, Liu H, et al. Are bone mineral density loci associated with hip osteoporotic fractures? A validation study on previously reported genome-wide association loci in a Chinese population [J]. Genetics & Molecular Research, 2012, 11(1): 202-210. [9] Guo Y, Yang TL, Dong SS, et al. Genetic analysis identifies DDR2 as a novel gene affecting bone mineral density and osteoporotic fractures in Chinese population [J]. PLoS One, 2015, 10(2): e0117102. [10] Richards JB, Zheng HF, Spector TD. Genetics of osteoporosis from genome-wide association studies: advances and challenges[J]. Nature Reviews Genetics, 2012, 13(8): 576-588. [11] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016: 246-267. Zhou ZH. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 246-267. [12] van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(Nov):2579-2605. [13] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12(10): 2825-2830. [14] 周文怡,顾徐波,施勇,等.基于机器学习的网页暗链检测方法[J].计算机工程, 2018, 44(10):22-27. Zhou WY, Gu XB, Shi Y, et al. Detection method for hidden hyperlink based on machine learning[J].Computer Engineering, 2018, 44(10): 22-27. [15] Quinlan JR. Induction on decision tree[J]. Machine Learning, 1986, 1(1): 81-106. [16] Breiman L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32. [17] Zhou ZH, Feng J. Deep Forest: Towards An Alternative to Deep Neural Networks [J/OL]. arXiv:1702.08835v3 [cs.LG] (2018-05-14) [2018-11-11]. https://arxiv.org/abs/1702.08835v3. [18] Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme [J]. BBA - Protein Structure, 1975, 405(2): 442-451.
|