设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
肝癌微波消融中热损伤参数分析

Analysis of thermal damage parameters in microwave ablation of liver cancer

作者: 赵金哲  王娟  沐勇杰  晋晓飞  钱志余  李韪韬  刘珈 
单位:南京航空航天大学自动化学院生物医学工程系(南京 211106) 湖南省肿瘤医院/中南大学湘雅医学院附属肿瘤医院(长沙 410013)
关键词: 微波消融;  肝脏;  热损伤;  动力学;  阿伦尼乌斯模型;  活化能 
分类号:R318;R735.7
出版年·卷·期(页码):2019·38·4(392-399)
摘要:

目的 肝癌微波消融研究中,局部热损伤监测和消融仿真计算通常采用Arrhenius模型进行热损伤分析,该模型主要包括活化能Ea和频率因子A两个热损伤参数,然而现有肝脏热损伤参数缺少动力学特性和预测效果对比分析。方法 本文采用Arrhenius模型从不同参数所描述的损伤速率和不同温度下的损伤进程方面阐述了其差别,并通过微波消融实验过程的温度数据分析了其对消融损伤的预测效果。结果 分析数据表明,Ea(J/mol?1)和A(s?1)分别为2.769×105和5.51×1041、 2.577×105和7.39×1039、1.200×105和4.016×1017的3组参数较适用于消融边界处的损伤计算。结论 本文对不同参数的对比有助于指导肝癌消融研究中合理选择热损伤参数进行热损伤分析,从而提高消融手术计划和术中疗效评估的准确性。

Objective In microwave ablation study of liver cancer, Arrhenius model of thermal damage which includes two parameters of activation energy Ea and frequency factor A, is frequently used in microwave ablation simulation and monitoring of local tissue damage. However, analysis of kinetic properties and damage prediction for thermal damage parameters of liver is in need. Methods This paper discussed different thermal damage parameters of liver on the aspects of damage accumulation rate and kinetic damage process under constant temperatures using Arrhenius model, and validated their damage predictions using temperature history from microwave ablation experiments. Results Comparative analysis showed that the parameters of Ea (J/mol) and A (s?1) which were 2.769×105 and 5.51×1041, 2.577×105 and 7.39×1039, 1.200×105 and 4.016×101 could be used for damage predictions on ablation boundary. Conclusions Parameter comparison in this paper provides guidance for thermal damage analysis in ablation studies of liver cancer to improve the accuracy of preoperative surgical planning and intraoperative assessment.

参考文献:

[1] 陈万青, 孙可欣, 郑荣寿, 等. 2014年中国分地区恶性肿瘤发病和死亡分析 [J]. 中国肿瘤, 2018, 27(1): 1-14.

Chen WQ, Sun KX, Zheng RS, et al. Report of cancer incidence and mortality in different areas of China,2014 [J]. Bulletin of Chinese Cancer, 2018, 27(1): 1-14.

[2] Chinnaratha MA, Chuang MY, Fraser RJ, et al. Percutaneous thermal ablation for primary hepatocellular carcinoma: a systematic review and meta-analysis [J]. Journal of Gastroenterology and Hepatology, 2016, 31(2): 294-301.

[3]国家肿瘤微创治疗产业技术创新战略联盟专家委员会,中国医师协会介入医师分会消融治疗专家工作指导委员会,北京医师协会介入医师分会.影像引导肝脏肿瘤热消融治疗技术临床规范化应用专家共识[J].中华医学杂志, 2017, 97(31):2420-2424.

[4] 梁萍, 窦健萍, 于杰. 肝肿瘤的微波消融治疗[J]. 中华老年多器官疾病杂志, 2016, 15(7):481-485.

Liang P, Dou JP, Yu J. Microwave ablation for treatment of liver tumors [J]. Chinese Journal of Multiple Organ Diseases in the Elderly, 2016, 15(7):481-485.

[5] Schumann C, Rieder C, Bieberstein J, et al. State of the art in computer-assisted planning, intervention, and assessment of liver-tumor ablation [J]. Critical Reviews in Biomedical Engineering, 2010, 38(1): 31-52.

[6] Xue J, Wu W, Liang P. Three-dimensional visualization technology and therapy planning system for microwave ablation therapy of liver tumor [M]//Liang P, Yu X, Yu J. Microwave Ablation Treatment of Solid Tumors. Dordrecht, NED: Springer, 2015: 283-292.

[7] 范卫君, 叶欣. 肿瘤微波消融治疗学[M]. 北京:人民卫生出版社, 2012.

[8] Liang P, Wang Y. Microwave ablation of hepatocellular carcinoma[J]. Oncology, 2007, 72 Suppl 1: 124-131.

[9] Keangin P, Rattanadecho P, Wessapan T. An analysis of heat transfer in liver tissue during microwave ablation using single and double slot antenna[J]. International Communications in Heat and Mass Transfer, 2011, 38(6): 757-766.

[10] Cavagnaro M, Pinto R, Lopresto V. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation[J]. Physics in Medicine & Biology, 2015, 60(8): 3287-3311.

[11] Liu D, Brace CL. Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose [J]. Physics in Medicine and Biology, 2017, 62(6): 2070-2086.

[12] Pearce JA. Models for thermal damage in tissues: processes and applications[J]. Critical Reviews in Biomedical Engineering, 2010, 38(1): 1-20.

[13] He X, Bischof JC. Quantification of temperature and injury response in thermal therapy and cryosurgery [J]. Critical Reviews in Biomedical Engineering, 2003, 31(5-6): 355-422.

[14] He X. Thermostability of biological systems: fundamentals, challenges, and quantification [J]. The Open Biomedical Engineering Journal, 2011, 5(1): 47-73.

[15] Jacques S, Newman C, He XY. Thermal coagulation of tissues. Liver studies indicate a distribution of rate parameters, not a single rate parameter, describes the coagulation process [C]//1991 Winter Annual Meeting of the American Society of Mechanical Engineers, Heat Transfer Division. Atlanta, GA, USA: 1991, 189: 71-73.

[16] 朱?, 骆清铭, 曾绍群, 等. 大鼠肝脏热损伤的光散射研究[J]. 中国激光, 2002, 29(7): 667-672.

Zhu D, Luo QM, Zeng SQ, et al. Study on kinetics of thermally induced damage of rat liver with light scattering technique[J]. Chinese Journal of Lasers, 2002, 29(7): 667-672.

[17] Terenji A, Willmann S, Osterholz J, et al. Measurement of the coagulation dynamics of bovine liver using the modified microscopic Beer-Lambert law [J]. Lasers in Surgery and Medicine, 2005, 36(5): 365-370.

[18] Zhao J, Zhao Q, Jiang Y, et al. Feasibility study of modeling liver thermal damage using minimally invasive optical method adequate for in situ measurement [J]. Journal of Biophotonics, 2018, 11(6): e201700302.

[19] Hillenkamp F. Interaction between laser radiation and biological systems [M]//Hillenkamp F, Pratesi R, Sacchi CA. Lasers in Biology and Medicine. Boston, MA, USA: Plenum Press, 1980: 37-68.

[20] Chang IA, Nguyen UD. Thermal modeling of lesion growth with radiofrequency ablation devices [J]. BioMedical Engineering OnLine, 2004, 3: 27.

[21] Barauskas R, Gulbinas A, Vanagas T, et al. Finite element modeling of cooled-tip probe radiofrequency ablation processes in liver tissue [J]. Computers in Biology and Medicine, 2008, 38(6): 694-708.

[22] Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue[J]. PLoS ONE, 2014, 9(8): e103083.

[23] 韩德刚, 高盘良. 化学动力学基础[M]. 北京: 北京大学出版社, 1987.

[24] 许越. 化学反应动力学[M]. 北京: 化学工业出版社, 2005.

[25] Wright NT. On a relationship between the Arrhenius parameters from thermal damage studies [J]. Journal of Biomechanical Engineering, 2003, 125(2): 300-304.

[26] 赵金哲, 钱志余, 刘珈, 等. 微波消融有效消融体积模型实验研究[J]. 中国生物医学工程学报, 2014, 33(1): 51-56.

Zhao JZ, Qian ZY, Liu J, et al. Experimental study on effective microwave ablation volume model[J]. Chinese Journal of Biomedical Engineering, 2014, 33(1): 51-56.

[27] Pearce JA. Comparative analysis of mathematical models of cell death and thermal damage processes [J]. International Journal of Hyperthermia, 2013, 29(4): 262-280.

[28] Sun Y, Cheng Z, Dong L, et al. Comparison of temperature curve and ablation zone between 915- and 2450-MHz cooled-shaft microwave antenna: results in ex vivo porcine livers [J]. European Journal of Radiology, 2011, 81(3): 553-557.

[29] 孙媛媛, 梁萍, 董宝玮, 等. 水冷915 MHz与2 450 MHz微波凝固离体猪肝的比较[J]. 中国医学影像技术, 2007, 23(2): 177-180.

Sun YY, Liang P, Dong BW, et al. Comparison of 915 MHz and 2 450 MHz microwave in ex vivo pork liver [J]. Chinese Journal of Medical Imaging Technology, 2007, 23(2): 177-180.

[30] Yu J, Liang P, Yu XL, et al. Local tumour progression after ultrasound-guided microwave ablation of liver malignancies: risk factors analysis of 2529 tumours [J]. European Radiology, 2015, 25(4): 1119-1126.

[31] Feng Y, Oden JT, Rylander MN. A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments [J]. Journal of Biomechanical Engineering, 2008, 130(4): 041016.

[32] O’Neill DP, Peng T, Stiegler P, et al. A three-state mathematical model of hyperthermic cell death [J]. Annals of Biomedical Engineering, 2011, 39(1): 570-579.

[33] Ritz J P, Roggan A, Isbert C, et al. Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm [J]. Lasers in Surgery and Medicine, 2001, 29(3): 205-212.

[34] Nagarajan VK, Yu B. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues [J]. Lasers in Surgery and Medicine, 2016, 48(7): 686-694.

[35] 张猛,高众,谭贵芳,等.肝动脉化疗栓塞联合超声引导下微波消融治疗原发性肝癌的效果分析[J].中国医药导报,2017,14(29):103-106.

Zhang M, GAO Z, Tan GF, et al. Effect of transcatheter arterial chemoembolization combined with ultrasound-guided microwave ablation in the treatment of primary hepatocellular carcinoma[J]. China Medical Herald, 2017,14(29):103-106.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com