设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
一种具监测功能的高精度微量移液器的设计

Design of a high-precision micropipette with monitoring function

作者: 张晓亮  王弼陡  罗刚银   
单位:中国科学技术大学生物医学工程学院(合肥 230026) 中国科学院苏州生物医学工程技术研究所(江苏苏州 215163)
关键词: 检验仪器;  微量移液;  PID算法;  STM32;  液面探测 
分类号:R318.6; TH715.3
出版年·卷·期(页码):2019·38·4(407-416)
摘要:

目的 针对全自动临床检验仪器传统移液方式的精度以及可靠性限制问题,设计一款带有液面监测功能的高精度微量移液器。方法 基于气动置换技术,以STM32微处理器为主控芯片,通过实时检测移液器内部压力变化,实现了液面探测、吸样异常监测等功能。采用位置-速度双闭环PID算法实现对直线步进电机的精确定位,提高样本吸取的准确度。最后,通过移液过程监测实验和吸样精度验证实验,验证了设计的微量移液器的液面探测功能、吸样异常识别功能及吸样精度。结果 该微量移液器移液精度较高,移液误差较小,重复性较好,并能实现移液的全过程监测。结论 本文设计的微量移液器满足JJG 646—2006国家标准设计规范,适用于全自动临床医疗检验仪器。

Objective A high-precision micropipette with monitoring function was designed to improve the accuracy and reliability of traditional liquid transfer mode of automatic clinical laboratory instruments. Methods Based on pneumatic displacement technology, the STM32 microprocessor was used as the main control chip. By real-time detection of the pressure inside the pipette, the functions of liquid level detection and abnormal sampling of suction samples were realized. Position-speed double closed-loop PID algorithm was used to achieve the precise positioning of linear stepping motor in order to improve the accuracy of sample absorption. Finally, the monitoring experiment of pipetting process and the verification experiment of pipetting accuracy were carried out to verify the liquid level detection function, the abnormal recognition function of the sample and the accuracy. Results The micropipette had higher precision, smaller error and better repeatability of liquid transfer, with the function of whole process monitoring. Conclusions The micropipette designed in this paper meets the JJG 646—2006 national design specification, and is suitable for fully automatic clinical laboratory instruments.

参考文献:

[1]     朱险峰, 张阔, 曾思思, 等. 全自动临床检验仪器中液面探测技术的进展[J]. 生物医学工程学杂志, 2010, 27(4): 949-952.

Zhu X, Zhang K, Zeng SS, et al. The development of techniques for liquid level detection in auto clinical laboratory analyzers[J]. Journal of Biomedical Engineering, 2010, 27(4):949-952.

[2]     李伟, 刘奇林, 朱星才. 探针液面检测装置及方法: 中国, 101135584A[P]. 2008-03-05.

[3]     李庆华. 梯形加减速算法在伺服系统中的应用研究[J]. 无线电工程, 2016, 46(7): 56-59.

Li QH. Research on application of trapezium Ac/Dc algorithm in servo system[J]. Radio Engineering, 2016, 46(7): 56-59.

[4]     武通园. 高速全自动生化分析仪高精度加样技术研究[D]. 深圳: 深圳大学, 2016.

[5]     张星原, 龙伟, 卢斌,等. 一种高灵敏度液面探测系统的设计及其临床应用[J]. 传感器与微系统, 2014, 33(6):72-75.

Zhang XY, Long W, Lu B, et al. Design of         a high sensitivity liquid level detection system and its clinical application[J]. Transducer and Microsystem Technologies, 2014, 33(6): 72-75,79.

[6]     李育德. 解析惠斯顿电桥在直流测量电路中的应用方程[J]. 测控技术, 2009, 28(5):94-97.

Li YD. Analysis of the equation of wheatstone bridge in DC measurement[J]. Measurement & Control Technology, 2009, 28(5): 94-97.

[7]     李然,岳永哲.差分放大电路的分析与仿真[J]. 电脑知识与技术, 2018,14(9): 246, 275.

[8]     关秀丽,雷艳敏,任丽晔. 仿真分析差分放大电路的性能[J]. 长春大学学报, 2012, 22(3):647-649.

Guan XL, Lei YM, Ren LY. Simulation analysis on the properties of differential amplifier circuit[J]. Journal of Changchun University, 2012, 22(3): 647-649.

[9]     张尚珠. 基于 Saber 的微分放大电路故障模式仿真与分析[J]. 仿真分析与测试技术, 2015, 33(5): 16-19.

Zhang SZ. The simulation and analysis of failure mode for differential amplification circuit based on saber[J]. Electronic Product Reliability and Environmental Testing, 2015,33(5): 16-19.

[10]  Belmont MR. An extension of Nyquist's theorem to non-uniformly sampled finite length data[J]. International Journal of Adaptive Control & Signal Processing, 1995, 9(2):163-181.

[11]  Welch G, Bishop G. An introduction to the Kalman filter[J]. Chapel Hill, NC, USA: University of North Carolina at Chapel Hill, 1995.

[12]  李路, 齐同, 郜晩蕾,等.基于专家PID控制和卡尔曼滤波的恒压进样系统[J].电子设计工程,2018,26(18):54-58, 63.

Li L, Qi T, Gao WL, et al. Constant pressure sampling system based on expert PID controller and Kalman filter[J]. Electronic Design Engineering, 2018, 26(18): 54-58, 63.

[13]  王典雄.全自动加样系统液面探测的研究[J].数字技术与应用,2015(1):59-60.

[14]  王海军,郭阳宽,祝连庆,等.小样本微量移液压力控制区间预测方法研究[J].仪表技术与传感器,2016(6):77-80.

Wang HJ, Guo YK, Zhu LQ, et al. Prediction method to get micropipette pressure control range on small sample[J]. Instrument Technique and Sensor, 2016(6): 77-80.

[15]  国家质量监督检验检疫总局. 移液器检定规程(JJG 646—2006) [S].北京:中国计量科学研究院,2006.

General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Verification regulation of locomotive pipette (JJG 646—2006) [S]. Beijing: National Institute of Metrology,China, 2006.

[16]  邬燕琪. 微量液体处理技术的研究及其在自动化核酸分析系统中的应用[D]. 南京:东南大学, 2016.

Wu YQ. Research on micro-vloume liquid handling technology and its applications for automated nucleic acid analysis system[D]. Nanjing: Southeast University, 2016.  

[17]  尚志武,周湘平,李成.高精度小型酶联免疫分析仪微量进样系统设计[J].工程设计学报, 2018, 25(5): 597-606.

Shang ZW, Zhou XP, Li C.Design of micro-sampling system with high precision for small enzyme immunoassay analyzer[J]. Chinese Journal of Engineering Design, 2018, 25(5): 597-606.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com