设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
一种基于可穿戴设备和智能手机的呼吸监测系统设计

Design of a respiratory monitoring system based on wearable devices and smart phone

作者: 刘永凯  孙珅  史文飞  吴水才 
单位:北京工业大学生命科学与生物工程学院(北京 100124)
关键词: 可穿戴设备;  智能手机;  低功耗蓝牙;  呼吸监测;  监护系统 
分类号:R318.6
出版年·卷·期(页码):2019·38·4(417-423)
摘要:

目的 呼吸运动是人体重要的生理活动之一,呼吸频率的变化能发映人体生理状况的好坏,因此呼吸频率的监测对于健康监护具有重要意义。方法 本研究设计一种基于可穿戴设备和智能手机的呼吸监测系统。可穿戴式设备的主控芯片采用低功耗蓝牙芯片nrf52832,利用加速度传感器MPU6050采集人体呼吸运动的加速度信号,利用低功耗蓝牙方式与智能手机进行通信;智能手机端软件能够实时接收可穿戴式设备发送过来的呼吸运动数据,利用后台运行的呼吸检测算法计算出呼吸频率等相关参数,并绘制出呼吸运动波形。此外,智能手机可以对接收到的呼吸运动数据进行存储,可对用户的呼吸活动进行长期的分析研究。结果 (1)穿戴式设备工作电流11 mA,广播电流12 mA,待机电流10 mA,工作电压3.3 V,功率约为33 mW;(2)呼吸检测的准确率在95%以上;(3)智能手机界面能够实时显示呼吸运动的加速度波形和呼吸频率。结论 本研究设计的系统具有方便佩戴、功耗低和呼吸检测准确性高等优点,能够适用于家庭等场所进行呼吸监护,满足人们对日常健康监护的需求。

Objective Breathing is one of the important physiological activities of human body, the change of respiration frequency can reflect the quality of human body, so the monitoring of respiratory frequency is of great significance for health monitoring. Methods In this study, a respiratory monitoring system based on wearable devices and smart phone was designed. The main control chip of wearable device adopts low power Bluetooth chip nrf52832, uses acceleration sensor MPU6050 to collect acceleration signal of human breathing motion, and communicates with smart phone by low power Bluetooth method. Smartphone software can receive breathing motion data sent by wearable devices in real time. The smartphone calculates the breathing frequency and other related parameters by using the breathing detection algorithm of the service running in the background, and draws the respiratory motion waveform. In addition, smart phone can store incoming breathing motion data for long-term analysis and research on the user's breathing activity. Results (1) wearable device operating current 11 mA, broadcast current 12 mA, standby current 10 mA, working voltage 3.3 V, power is about 33 mW; (2) The accuracy of respiratory testing is above 95%; (3) The smartphone interface displays the acceleration waveform and respiratory rate of the breathing movement in real time. Conclusions The system designed in this study has the advantages of easy wearing, low power consumption and high breath detection accuracy. It can be used for respiratory monitoring in homes and other places to meet people's needs for daily health monitoring.

参考文献:

[1]       周静,吴效明.睡眠呼吸暂停综合征患者脑电的去趋势波动分析[J].生物医学工程学杂志,2016,33(5):842-846.

Zhou J, Wu XM. Detrended fluctuation analysis of electroencephalogram of patients with sleep apnea syndrome[J]. Journal of Biomedical Engineering, 2016,33(5):842-846.

[2]       严旭,刘洪英,贾子如,等.呼吸频率检测技术研究现状[J].北京生物医学工程,2017, 36(5):545-549.

Yan X, Liu HY, Jia ZR, et al. Advances in the detection of respiratory rate [J]. Beijing Biomedical Engineering, 2017, 36(5):545-549.

[3]       刘光达,王宪忠,蔡靖,等.基于胸阻抗法的穿戴式呼吸检测方法研究[J].生物医学工程学杂志,2016,33(6):1103-1109.

Liu GD, Wang XZ, Cai J, et al. Research on detection method with wearable respiration device based on the theory of bio-impedance [J]. Journal of Biomedical Engineering, 2016,33(6):1103-1109.

[4]       邹滋润,陈真诚,朱健铭.基于光电容积脉搏波的呼吸波提取[J].中国生物医学工程学报,2013,32(4):508-512.

Zou ZR, Chen ZC, Zhu JM. Extraction of respiratory wave from photoplethysmography signals[J]. Journal of Biomedical Engineering of China, 2013, 32(4):508-512.

[5]       姬军,潘美玲,沙杭,等.呼吸感应体积描记法校准方法在不同呼吸状态下的适用性[J].航天医学与医学工程,2013,26(1):43-46.

Ji J, Pan ML, Sha H, et al. Applicability of calibration methods under different breathing patterns in respiratory inductive plethysmography [J].Space Medicine & Medical Engineering, 2013,26(1):43-46.

[6]       Balocchi R, Menicucci D, Santarcangelo E, et al. Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition[J]. Chaos Solitons & Fractals, 2004, 20(1):171-177.

[7]       Brink M, Müller CH, Schierz C. Contact-free measurement of heart rate, respiration rate, and body movements during sleep[J]. Behavior Research Methods, 2006, 38(3): 511-521.

[8]       Tan KS, Saatchi R, Elphick HE, et al. Real-time vision based respiration monitoring system[C]// 2010 7th International Symposium on Communication Systems Networks and Digital Signal Processing (CSNDSP). Newcastle upon Tyne, United Kingdom: IEEE Press, 2010.

[9]       丁赫. 基于普通摄像头的人体呼吸特征的测量[D]. 天津: 天津大学, 2012.

Ding H. Measurement of human breath based on ordinary camera [D]. Tianjin: Tianjin University, 2012.

[10]    Lee YS, Pathirana PN, Evans RJ, et al. Noncontact detection and analysis of respiratory function using microwave Doppler radar[J]. Journal of Sensors,2015, 2015: 548136.

[11]    颜延, 邹浩, 周林,等. 可穿戴技术的发展[J]. 中国生物医学工程学报, 2015, 34(6):644-653.

Yan Y, Zou H, Zhou L, et al. The development of wearable technologies[J]. Chinese Journal of Biomedical Engineering, 2015, 34(6):644-653.

[12]    游玲, 郑瑞杰, 季忠. 基于Android平台的无创血压连续监测系统[J]. 中国生物医学工程学报, 2017, 36(4):497-501.

You L, Zheng RJ, Ji Z. Non-invasive blood pressure monitoring system based on Android platform[J]. Chinese Journal of Biomedical Engineering, 2017, 36(4):497-501.

[13]    齐志强.高速PCB设计经验与体会[J].电子设计工程, 2011, 19(16):141-143.

Qi ZQ. Experience and understanding of high-speed PCB design[J]. Electronic Design Engineering, 2011,19(16):141-143.

[14]    王骥,郭海亮,任肖丽.基于蓝牙低功耗技术的智能健康监测手表系统[J].生物医学工程学杂志,2017,34(4):557-564.

Wang J, Guo HL, Ren XL. Intelligent watch system for health monitoring based on Bluetooth low energy technology[J]. Journal of Biomedical Engineering, 2017, 34(4):557-564.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com