[1] Hoffmann K R, Wahle A, Pellot-Barakat C, et al. Biplane X-ray angiograms, intravascular ultrasound, and 3D visualization of coronary vessels[J]. The International Journal of Cardiac Imaging, 1999, 15(6): 495-512. [2] Laban M, Oomen JA, Slager C, et al. ANGUS: a new approach to three-dimensional reconstruction of coronary vessels by combined use of angiography and intravascular ultrasound[C]// Conference: Computers in Cardiology. Vienna, Austria:IEEE Press, 1995. [3] Faber T L, Santana C A, Garcia E V, et al. Three-dimensional fusion of coronary arteries with myocardial perfusion distributions: clinical validation[J]. The Journal of Nuclear Medicine, 2004, 45(5): 745-753. [4] Wahle A, Prause GPM, Dejong SC, et al. Determination of the absolute axial orientation of intracoronary ultrasound images in fusion with biplane angiography[C]//Conference: Computers in Cardiology. Cleveland, OH, USA:IEEE Press, 1998. [5] Bourantas CV, Kourtis IC, Plissiti ME, et al. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images[J]. Computerized Medical Imaging and Graphics, 2005, 29(8): 597-606. [6] Zheng S. Three-dimensional reconstruction of vessels from intravascular ultrasound sequence and X-ray angiograms[C]// International Conference on Biomedical Engineering and Informatics. Tianjin, China: BMEI, 2009. [7] Doulaverakis C, Tsampoulatidis I, Antoniadis AP, et al. IVUSAngio Tool: a publicly available software for fast and accurate 3D reconstruction of coronary arteries[J]. Computers in Biology and Medicine, 2013, 43(11): 1793-1803. [8] Timmins LH, Molony DS, Eshtehardi P, et al. Focal association between wall shear stress and clinical coronary artery disease progression[J]. Annals of Biomedical Engineering, 2015, 43(1): 94-106. [9] Wang L, Wu Z, Yang C, et al. IVUS-based FSI models for human coronary plaque progression study: components, correlation and predictive analysis[J]. Annals of Biomedical Engineering, 2015, 43(1): 107-121. [10] Zheng S, Lan Z. Reconstruction of optical absorption coefficient distribution in intravascular photoacoustic imaging[J]. Computers in Biology and Medicine, 2018, 97: 37-49. [11] Zheng S, Mengchan L. Reconstruction of coronary vessels from intravascular ultrasound image sequences based on compensation of the in-plane motion[J]. Computerized Medical Imaging and Graphics, 2013, 37(7-8): 618-627. [12] 孙正. 应用血管内超声与X射线造影图像融合的血管三维重建[J]. 工程图学学报, 2010, 31(1): 116-123. Sun Z. 3D reconstruction of vessel based on fusion of IVUS and X-ray angiograms [J]. Journal of Engineering Graphics, 2010, 31(1): 116-123. [13] 王焕丽. 血管内超声成像的三维重构研究与实现[D]. 哈尔滨:哈尔滨工业大学, 2013. Wang HL. Three-dimensional reconstruction study and implementation based on intravascular ultrasound imaging[D]. Harbin:Harbin Institute of Technology, 2013. [14] 王岭, 陈曦, 董峰, 等. 基于CAG和IVUS图像的血管模型重建方法[J]. 计算机辅助设计与图形学学报, 2016, 28(9): 1506-1511. Wang L, Chen X, Dong F, et al. Reconstruction method for vascular model based on CAG and IVUS image[J]. Journal of Computer-Aided Design and Computer Graphics, 2016, 28(9): 1506-1511. [15] 刘存. 血管内超声图像中血流动力学参数的定量测量方法研究[D]. 保定:华北电力大学, 2013. Liu C. Research on quantitative measurement of hemodynamic parameters in intravascular ultrasound images[D]. Baoding: North China Electric Power University, 2013. [16] Carlier S, Didday R, Slots T, et al. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography[J]. Cardiovascular Revascularization Medicine : including molecular interventions, 2014, 15(4): 226-232. [17] Soulis JV, Giannoglou GD, Chatzizisis YS, et al. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery[J]. Medical Engineering & Physics, 2008, 30(1): 9-19. [18] Timmins LH, Suo J, Eshtehardi P, et al. Comparison of angiographic and IVUS derived coronary geometric reconstructions for evaluation of the association of hemodynamics with coronary artery disease progression[J]. The International Journal of Cardiovascular Imaging, 2016, 32(9): 1327-1336. [19] Yang C, Bach RG, Zheng J, et al. In vivo IVUS-based 3-D fluid-structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis[J]. IEEE Transactions on Bio-medical Engineering, 2009, 56(10): 2420-2428. [20] Fujimoto JG, Schmitt JM, Swanson EA, et al. The development of OCT[J]. Cardiovascular OCT Imaging, 2015: 1-21. [21] Gurmeric S, Isguder GG, Carlier S, et al. A new 3-D automated computational method to evaluate in-stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks[M]//Medical Image Computing and Computer- Assisted Intervention. Berlin: Springer-Verlag, 2009, 12(2): 776-785. [22] Chiastra C, Montin E, Bologna M, et al. Reconstruction of stented coronary arteries from optical coherence tomography images: feasibility, validation, and repeatability of a segmentation method[J]. PLoS One, 2017, 12(6): e0177495. [23] Unal G, Gurmeric S, Carlier SG. Stent implant follow-up in intravascular optical coherence tomography images[J]. The International Journal of Cardiovascular Imaging, 2010, 26(7): 809-816. [24] Ohtsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 9(1): 62-66. [25] Wang Z, Kyono H, Bezerra HG, et al. Automatic segmentation of intravascular optical coherence tomography images for facilitating quantitative diagnosis of atherosclerosis[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2015, 7889(1): 78890N-78890N-7. [26] Wang Z, Jenkins M, Linderman G, et al. 3-D Stent Detection in Intravascular OCT Using a Bayesian Network and Graph Search[J]. IEEE Transactions on Medical Imaging, 2015, 34(7): 1549-1561. [27] Dubuisson F, Péry E, Ouchchane L, et al. Automated peroperative assessment of stents apposition from OCT pullbacks[J]. Computers in Biology and Medicine, 2015, 59(C): 98-105. [28] Scheerlinck C, Mamon C, Zahtila T, et al. Effect of medical imaging modalities on the simulated blood flow through a 3D reconstructed stented coronary artery segment[C]// 20th Australasian Fluid Mechanics Conference. Perth: AFMC, 2016. [29] Giannopoulos A, Chatzizisis YS, Giannoglou GD. Optical coherence tomography: an arrow in our quiver[J]. Expert Review of Cardiovascular Therapy, 2012, 10(5):539-541. [30] Kelsey L J, Schultz C, Miller K, et al. The effects of geometric variation from OCT-derived 3D reconstructions on wall shear stress in a patient-specific coronary artery[J]. Computational Biomechanics for Medicine, 2017: 1-13. [31] Migliori S, Chiastra C, Bologna M, et al. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images[J]. Medical Engineering and Physics, 2017, 47: 105-116. [32] Lee KE, Lee SH, Shin ES, et al. A vessel length-based method to compute coronary fractional flow reserve from optical coherence tomography images[J]. BioMedical Engineering OnLine, 2017, 16(1): 83. [33] 陈艳花. 血管内OCT图像序列中血管三维重建方法的研究[D]. 保定:华北电力大学, 2016. Chen YH. Research on 3D reconstruction of vessels from intravascular OCT image sequences[D]. Baoding: North China Electric Power University, 2016. [34] Guo X, Giddens DP, Molony D, et al. Combining IVUS and optical coherence tomography for more accurate coronary cap thickness quantification and stress/strain calculations: a patient-specific three-dimensional fluid-structure interaction modeling approach[J]. Journal of Biomechanical Engineering, 2018, 140(4): 041005. [35] 钱秀清, 张晓慧, 王燕, 等. 基于CT成像的冠状动脉流固耦合分析[J]. 北京生物医学工程, 2010, 29(4): 331-335. Qian XQ, Zhang XH, Wang Y. et al.Fluid-solid coupling analysis of the coronary artery based on the CT images[J]. Beijing Biomedical Engineering, 2010, 29(4): 331-335. [36] 谭启路, 程云章. 基于区域生长法的三维心血管模型的分割[J]. 北京生物医学工程, 2016, 35(5): 469-475. Tan QL, Cheng YZ. Reconstruction of coronary blood vessels based on 3D region growing algorithm[J]. Beijing Biomedical Engineering, 2016, 35(5): 469-475. [37] van der Giessen AG, Schaap M, Gijsen FJ, et al. 3D fusion of intravascular ultrasound and coronary computed tomography for in-vivo wall shear stress analysis: a feasibility study[J]. International Journal of Cardiovascular Imaging, 2010, 26(7): 781-796. [38] Gijsen FJ, Schuurbiers JC, van de Giessen AG, et al. 3D reconstruction techniques of human coronary bifurcations for shear stress computations[J]. Journal of Biomechics, 2014, 47(1): 39-43. [39] Chiastra C, Wu W, Dickerhoff B, et al. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses[J]. Journal of Biomechanics, 2016, 49(11): 2102-2111. [40] 王瑞琛,陈方,徐良鹏,等.基于三维冠状动脉CTA图像的半自动血管分割方法[J]. 北京生物医学工程, 2016, 35(6): 632-638. Wang RC, Chen F, Xu LP, et al. Semi-automatic vessel segmentation of 3D medical images applied to coronary vessel segmentation[J]. Beijing Biomedical Engineering, 2016, 35(6): 632-638.
|