设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于医学图像的超分辨率重建算法综述

Review of super-resolution reconstruction algorithms in medical image

作者: 成云凤  汪伟 
单位:上海理工大学(上海 200093)
关键词: 超分辨率重建;  医学图像处理;  字典学习;  稀疏表示;  卷积神经网络 
分类号:R318.04
出版年·卷·期(页码):2019·38·5(535-543)
摘要:

随着临床对医学图像高分辨率的要求,基于低分辨率医学图像的超分辨率重建算法已成为研究热点,该类方法在不需要改进硬件设备的情况下,可以显著提高图像分辨率,因此对其进行综述具有重要意义。针对医学图像领域中特有的超分辨率重建算法,首先分析了该类算法的研究现状,并将其分为三类:基于插值的超分辨率重建、基于重构的超分辨率重建和基于学习的超分辨率重建。同时,基于MR图像、CT图像、超声图像等细分医学图像领域,深入分析了超分辨率重建算法的研究进展,并对不同类型的算法进行了归纳总结和比对分析。其次,对超分辨率重建算法所对应的评价标准也进行了介绍。最后,展望了超分辨率重建技术在医学图像领域的发展趋势。当前应用于医学图像领域的超分辨重建算法已经发展到一定水平,已经逐步突破基于单一方法的研究形式,通过与机器学习与稀疏表示等理论的深度融合,形成了更高效的算法。

With the demand of high resolution in clinical medical image, the super-resolution reconstruction algorithm based on low-resolution medical images has become a research hotspot. This method can significantly improve the image resolution without the need of upgrading hardware devices, so it is of great significance to review them. In terms of the special super-resolution reconstruction algorithms in the field of medical images, this paper firstly analyzes the research status of related algorithms, then divides them into three categories: the algorithm based on interpolation, reconfiguration algorithms and learning algorithms. Meanwhile, based on the subdivision of medical image field, including MR image, CT image and ultrasonic image, the research progress of super-resolution reconstruction algorithm is deeply analyzed, and different types of algorithms are summarized and compared. Secondly, the evaluation criteria of the super-resolution reconstruction algorithm are also introduced. Finally, the development trend of super-resolution reconstruction technology in the field of medical imaging is prospected. At present, these kinds of technologies have been developed rapidly, and infused with other methods, such as machine learning and sparse representation theories, which may bring out more efficient algorithms.

参考文献:

[1]    徐军,刘慧,尹义龙.基于非局部自回归学习的医学图像超分辨重建方法[J].模式识别与人工智能,2017,30(8):747-753.

Xu J, Liu H, Yin YL. A method of medical image super-resolution reconstruction based on non-local autoregressive learning[J]. Pattern Recognition and Artificial Intelligence , 2017,30(8):747-753.

[2]    庾吉飞.基于学习的图像超分辨率重建算法研究[D].西安:西安电子科技大学,2013.

          Yu JF. Research on image super-resolution reconstruction algorithm based on learning[D]. Xi’an :Xidian University,2013.

[3]    袁晶.基于超分辨重建数学模型的医学图像处理方法[J].计算机仿真,2014,31(5):243-245.

          Yuan J. Medical image processing method based on super-resolution reconstruction mathematical model[J]. Computer Simulation ,2014,31(5):243-245.

[4]    Tsai RY,Huang TS. Multi-frame image restoration and registration[J]. Advance Computer Visual and Image Processing, 1984, 1: 317-339.

[5]    Mahmoudzadeh AP, Kashou NH. Interpolation-based super-resolution reconstruction: effects of slice thickness[J]. Journal of Medical Imaging, 2014, 1(3): 034007.

[6]  Luo J, Mou Z, Qin B, et al. Fast single image super-resolution using estimated low-frequency k-space data in MRI[J]. Magnetic resonance imaging, 2017, 40: 1-11.

[7]    van Aarle W, Batenburg KJ, Van Gompel G, et al. Super-resolution for computed tomography based on discrete tomography[J]. IEEE Transactions on image processing, 2014, 23(3): 1181-1193.

[8]    Mahmoud A, Taher F, Al-Ahmad H. Two dimensional filters for enhancing the resolution of interpolated CT scan images[C]//Innovations in Information Technology (IIT), 2016 12th International Conference on IEEE, 2016: 1-6.

[9]    张煜,吴秀秀,戴振晖. 基于配准的肺4D-CT图像超分辨率重建方法:中国, 103886568[P].2014-06-25.

[10]  Morin R, Basarab A, Bidon S, et al. Motion estimation-based image enhancement in ultrasound imaging[J]. Ultrasonics, 2015, 60: 19-26.

[11]  Huang Q, Huang Y, Hu W, et al. Bezier interpolation for 3-D freehand ultrasound[J]. IEEE Transactions on Human-Machine Systems, 2015, 45(3): 385-392.

[12]  Chang G, Pan T, Qiao F, et al. Comparison between two super-resolution implementations in PET imaging[J]. Medical physics, 2009, 36(4): 1370-1383.

[13]  Farsiu S, Robinson MD, Elad M, et al. Fast and robust multiframe super resolution[J]. IEEE transactions on image processing, 2004, 13(10): 1327-1344.

[14]   Irani M, Peleg S. Super resolution from image sequences[C]//[1990] Proceedings. 10th International Conference on Pattern Recognition. IEEE, 1990, 2: 115-120.

[15]  Stark H, Olsen E T. Projection-based image restoration[J]. JOSA A, 1992, 9(11): 1914-1919.

[16]  Schultz RR, Stevenson RL. Motion-compensated scan conversion of interlaced video sequences[C]//Image and Video Processing IV. International Society for Optics and Photonics, 1996, 2666: 107-119.

[17]  Zheng H, Zeng K, Guo D, et al. Multi-Contrast Brain MRI Image Super-Resolution With Gradient-Guided Edge Enhancement[J]. IEEE Access, 2018, 6: 57856-57867.

[18]  Viermetz MP, Birnbacher LJB, Fehringer A, et al. High resolution laboratory grating-based X-ray phase-contrast CT[C]//Medical Imaging 2017: Physics of Medical Imaging. International Society for Optics and Photonics, 2017, 10132: 101325K.

[19]  Li Y, Matej S, Metzler SD. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging[J]. Medical physics, 2014, 41(12):12912-1-12912-14.

[20]  Malczewski K, Buczkowski M. Semi-propeller compressed sensing MR image super-resolution reconstruction[C]//Signals and Electronic Systems (ICSES), 2014 International Conference on. IEEE, 2014: 1-4.

[21]  Xu H, Miao H, Yang C, et al. Research on super-resolution image reconstruction based on an improved POCS algorithm[C]//International Conference on Optical and Photonic Engineering (icOPEN 2015). International Society for Optics and Photonics, 2015, 9524: 95242V.

[22]  李宇宙, 张喆, 陈泉荣, 等. 一种以超分辨率理论为基础的磁共振眼球成像方法[J]. 波谱学杂志, 2017, 34(4): 439-452.

          Li YZ, Zhang Z, Chen QR, et al. A magnetic resonance eye imaging method based on super - resolution theory[J]. Chinese Journal of Magnetic Resonance , 2017, 34(4): 439-452.

[23]  Han XH, Iwamoto Y, Shiino A, et al. Robust isotropic super-resolution by maximizing a Laplace posterior for MRI volumes[C]//Medical Imaging 2014: Image Processing. International Society for Optics and Photonics, 2014, 9034: 90342I.

[24]  Zhao N, Wei Q, Basarab A, et al. Single image super-resolution of medical ultrasound images using a fast algorithm[C]//2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE, 2016: 473-476.

[25]  Freeman WT, Jones TR, Pasztor EC. Example-based super-resolution[J]. IEEE Computer graphics and Applications, 2002, 22(2): 56-65.

[26]  Yang J, Wright J, Huang T, et al. Image super-resolution as sparse representation of raw image patches[C]//  IEEE Conference on on Computer Vision and Pattern Recognition .Anchorage, AK:CVPR,2008: 1–8.

[27]  李欣, 崔子冠, 朱秀昌. 超分辨率重建算法综述[J]. 电视技术, 2016, 40(9): 1-9.

          Li X,Cui ZG,Zhu XC. Overview of super resolution reconstruction algorithms[J]. Television Technology, 2016, 40(9): 1-9.

[28]  Bustin A, Voilliot D, Menini A, et al. Isotropic reconstruction of  mr images using 3D patch-based self-similarity learning[J]. IEEE Transactions on Medical Imaging, 2018, 37(8): 1932-1942.

[29]  Ota J, Umehara K, Ishimaru N, et al. Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography[C]//Medical Imaging 2017: Image Processing. International Society for Optics and Photonics, 2017, 10133: 101331S.

[30]  Zeng XH, Hou SL. Manifold-regularization super-resolution image reconstruction[J]. Journal of Computers, 2017, 28(1): 119-136.

[31]  Yang G, Ye X, Slabaugh G, et al. Super-resolved enhancement of a single image and its application in cardiac MRI[C]//International Conference on Image and Signal Processing. Berlin:Springer, 2016: 179-190.

[32]  席志红,曾继琴,李爽.基于双字典和稀疏表示的医学图像超分辨率重建[J].计算机测量与控制,2017,25(3):197-200.

          Xi ZH,Zeng JQ,Li S. Medical image super-resolution reconstruction based on double dictionary and sparse representation[J]. Computer Measurement & Control , 2017,25(3):197-200.

[33]  梁海兰. 乳腺 MR 图像三维超分辨率重建[D]. 天津:天津大学, 2017.

          Liang HL. Super-resolution reconstruction of three-dimensional breast MR images[D]. Tianjin :Tianjin University ,2017.

[34]  Asif M, Akram MU, Hassan T, et al. High resolution        OCT image generation using super resolution via sparse representation[C]//Eighth International Conference on Graphic and Image Processing (ICGIP 2016). International Society for Optics and Photonics, 2017, 10225: 1022512.

[35]   Jiang C, Zhang Q, Fan R, et al. Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation[J]. Scientific reports, 2018, 8(1): 8799.

[36]  朱雪茹,李勇明,李传明,等.基于双层字典学习的低剂量CT图像重建算法[J].北京生物医学工程,2017, 36(6):584-590.

          Zhu XR, Li YM, Li CM, et al. Low dose CT image reconstruction algorithm based on bilayer dictionary learning[J]. Beijing Biomedical Engineering,2017, 36 (6):584-590.

[37]  Lai R, Li J. Manifold based low-rank regularization for image restoration and semi-supervised learning[J]. Journal of Scientific Computing, 2018, 74(3): 1241-1263.

[38]  李斌, 李德来, 张琼. 基于稀疏表示的 B 型超声图像超分辨重建算法[J]. 中国医疗器械信息, 2014, 20(7): 4-7.

          Li B,Li DL,Zhang Q. A super - resolution reconstruction algorithm based on sparse representation of B - type ultrasonic images[J]. China Medical Device Information , 2014, 20(7): 4-7.

[39]  Dong C, Loy C C, He K, et al. Learning a deep convolutional network for image super-resolution[C] // European conference on computer vision. Springer, Cham, 2014: 184-199.

[40]  邢晓羊,魏敏,符颖.基于特征损失的医学图像超分辨率重建[J].计算机工程与应用,2018,54(20):202-207.

          Xing XY,Wei M,Fu Y. Super-resolution reconstruction of medical images based on feature loss[J]. Computer Engineering and Applications , 2018,54(20):202-207.

[41]  高媛,刘志,秦品乐,等.基于深度残差生成对抗网络的医学影像超分辨率算法[J].计算机应用,2018,9:2689-2695.

Gao Y,Liu Z,Qin PL, et al. Super-resolution algorithm of medical image based on deep residuals to generate adversarial network[J]. Journal of Computer Applications , 2018, 9:2689-2695.

[42]  Oktay O, Ferrante E, Kamnitsas K, et al. Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation[J]. IEEE transactions on medical imaging, 2018, 37(2): 384-395.

[43]  Li H, Gao Y, Dong J, et al. Super-Resolution Based on Noise Resistance Deep Convolutional Network[C]// Proceedings of the 2018 6th International Conference on Bioinformatics and Computational Biology.  Switzerland :ACM, 2018: 88-94.

[44]  Caballo M, Fedon C, Brombal L, et al. Development of 3D patient-based super-resolution digital breast phantoms using machine learning[J]. Physics in Medicine & Biology, 2018, 63(22): 225017.

[45]   Hong X, Zan Y, Weng F, et al. Enhancing the Image Quality via Transferred Deep Residual Learning of Coarse PET Sinograms[J]. IEEE transactions on medical imaging, 2018, 37(10): 2322-2332.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com