[1] 徐军,刘慧,尹义龙.基于非局部自回归学习的医学图像超分辨重建方法[J].模式识别与人工智能,2017,30(8):747-753. Xu J, Liu H, Yin YL. A
method of medical image super-resolution reconstruction based on
non-local autoregressive learning[J]. Pattern Recognition and Artificial
Intelligence , 2017,30(8):747-753. [2] 庾吉飞.基于学习的图像超分辨率重建算法研究[D].西安:西安电子科技大学,2013. Yu JF. Research on image super-resolution reconstruction algorithm based on learning[D]. Xi’an :Xidian University,2013. [3] 袁晶.基于超分辨重建数学模型的医学图像处理方法[J].计算机仿真,2014,31(5):243-245. Yuan J. Medical image processing method based on super-resolution reconstruction mathematical model[J]. Computer Simulation ,2014,31(5):243-245. [4] Tsai RY,Huang TS. Multi-frame image restoration and registration[J]. Advance Computer Visual and Image Processing, 1984, 1: 317-339. [5]
Mahmoudzadeh AP, Kashou NH. Interpolation-based super-resolution
reconstruction: effects of slice thickness[J]. Journal of Medical
Imaging, 2014, 1(3): 034007. [6]
Luo J, Mou Z, Qin B, et al. Fast single image super-resolution using
estimated low-frequency k-space data in MRI[J]. Magnetic resonance
imaging, 2017, 40: 1-11. [7]
van Aarle W, Batenburg KJ, Van Gompel G, et al. Super-resolution for
computed tomography based on discrete tomography[J]. IEEE Transactions
on image processing, 2014, 23(3): 1181-1193. [8]
Mahmoud A, Taher F, Al-Ahmad H. Two dimensional filters for
enhancing the resolution of interpolated CT scan images[C]//Innovations
in Information Technology (IIT), 2016 12th International Conference on
IEEE, 2016: 1-6. [9] 张煜,吴秀秀,戴振晖. 基于配准的肺4D-CT图像超分辨率重建方法:中国, 103886568[P].2014-06-25. [10]
Morin R, Basarab A, Bidon S, et al. Motion estimation-based image
enhancement in ultrasound imaging[J]. Ultrasonics, 2015, 60: 19-26. [11]
Huang Q, Huang Y, Hu W, et al. Bezier interpolation for 3-D freehand
ultrasound[J]. IEEE Transactions on Human-Machine Systems, 2015, 45(3):
385-392. [12]
Chang G, Pan T, Qiao F, et al. Comparison between two super-resolution
implementations in PET imaging[J]. Medical physics, 2009, 36(4):
1370-1383. [13]
Farsiu S, Robinson MD, Elad M, et al. Fast and robust multiframe super
resolution[J]. IEEE transactions on image processing, 2004, 13(10):
1327-1344. [14]
Irani M, Peleg S. Super resolution from image sequences[C]//[1990]
Proceedings. 10th International Conference on Pattern Recognition. IEEE,
1990, 2: 115-120. [15] Stark H, Olsen E T. Projection-based image restoration[J]. JOSA A, 1992, 9(11): 1914-1919. [16]
Schultz RR, Stevenson RL. Motion-compensated scan conversion of
interlaced video sequences[C]//Image and Video Processing IV.
International Society for Optics and Photonics, 1996, 2666: 107-119. [17]
Zheng H, Zeng K, Guo D, et al. Multi-Contrast Brain MRI Image
Super-Resolution With Gradient-Guided Edge Enhancement[J]. IEEE Access,
2018, 6: 57856-57867. [18]
Viermetz MP, Birnbacher LJB, Fehringer A, et al. High resolution
laboratory grating-based X-ray phase-contrast CT[C]//Medical Imaging
2017: Physics of Medical Imaging. International Society for Optics and
Photonics, 2017, 10132: 101325K. [19]
Li Y, Matej S, Metzler SD. Image reconstructions from super-sampled
data sets with resolution modeling in PET imaging[J]. Medical physics,
2014, 41(12):12912-1-12912-14. [20]
Malczewski K, Buczkowski M. Semi-propeller compressed sensing MR image
super-resolution reconstruction[C]//Signals and Electronic Systems
(ICSES), 2014 International Conference on. IEEE, 2014: 1-4. [21]
Xu H, Miao H, Yang C, et al. Research on super-resolution image
reconstruction based on an improved POCS algorithm[C]//International
Conference on Optical and Photonic Engineering (icOPEN 2015).
International Society for Optics and Photonics, 2015, 9524: 95242V. [22] 李宇宙, 张喆, 陈泉荣, 等. 一种以超分辨率理论为基础的磁共振眼球成像方法[J]. 波谱学杂志, 2017, 34(4): 439-452. Li YZ, Zhang Z, Chen QR, et al. A magnetic resonance eye imaging method based on super - resolution theory[J]. Chinese Journal of Magnetic Resonance , 2017, 34(4): 439-452. [23]
Han XH, Iwamoto Y, Shiino A, et al. Robust isotropic super-resolution
by maximizing a Laplace posterior for MRI volumes[C]//Medical Imaging
2014: Image Processing. International Society for Optics and Photonics,
2014, 9034: 90342I. [24]
Zhao N, Wei Q, Basarab A, et al. Single image super-resolution of
medical ultrasound images using a fast algorithm[C]//2016 IEEE 13th
International Symposium on Biomedical Imaging (ISBI). IEEE, 2016:
473-476. [25]
Freeman WT, Jones TR, Pasztor EC. Example-based super-resolution[J].
IEEE Computer graphics and Applications, 2002, 22(2): 56-65. [26]
Yang J, Wright J, Huang T, et al. Image super-resolution as sparse
representation of raw image patches[C]// IEEE Conference on on Computer
Vision and Pattern Recognition .Anchorage, AK:CVPR,2008: 1–8. [27] 李欣, 崔子冠, 朱秀昌. 超分辨率重建算法综述[J]. 电视技术, 2016, 40(9): 1-9. Li X,Cui ZG,Zhu XC. Overview of super resolution reconstruction algorithms[J]. Television Technology, 2016, 40(9): 1-9. [28]
Bustin A, Voilliot D, Menini A, et al. Isotropic reconstruction of mr
images using 3D patch-based self-similarity learning[J]. IEEE
Transactions on Medical Imaging, 2018, 37(8): 1932-1942. [29]
Ota J, Umehara K, Ishimaru N, et al. Evaluation of the sparse coding
super-resolution method for improving image quality of up-sampled images
in computed tomography[C]//Medical Imaging 2017: Image Processing.
International Society for Optics and Photonics, 2017, 10133: 101331S. [30]
Zeng XH, Hou SL. Manifold-regularization super-resolution image
reconstruction[J]. Journal of Computers, 2017, 28(1): 119-136. [31]
Yang G, Ye X, Slabaugh G, et al. Super-resolved enhancement of a
single image and its application in cardiac MRI[C]//International
Conference on Image and Signal Processing. Berlin:Springer, 2016: 179-190. [32] 席志红,曾继琴,李爽.基于双字典和稀疏表示的医学图像超分辨率重建[J].计算机测量与控制,2017,25(3):197-200. Xi ZH,Zeng JQ,Li S. Medical image super-resolution reconstruction based on double dictionary and sparse representation[J]. Computer Measurement & Control , 2017,25(3):197-200. [33] 梁海兰. 乳腺 MR 图像三维超分辨率重建[D]. 天津:天津大学, 2017. Liang HL. Super-resolution reconstruction of three-dimensional breast MR images[D]. Tianjin :Tianjin University ,2017. [34]
Asif M, Akram MU, Hassan T, et al. High resolution OCT image
generation using super resolution via sparse representation[C]//Eighth
International Conference on Graphic and Image Processing (ICGIP 2016).
International Society for Optics and Photonics, 2017, 10225: 1022512. [35]
Jiang C, Zhang Q, Fan R, et al. Super-resolution CT Image
Reconstruction Based on Dictionary Learning and Sparse
Representation[J]. Scientific reports, 2018, 8(1): 8799. [36] 朱雪茹,李勇明,李传明,等.基于双层字典学习的低剂量CT图像重建算法[J].北京生物医学工程,2017, 36(6):584-590. Zhu XR, Li YM, Li CM, et al. Low dose CT image reconstruction algorithm based on bilayer dictionary learning[J]. Beijing Biomedical Engineering,2017, 36 (6):584-590. [37]
Lai R, Li J. Manifold based low-rank regularization for image
restoration and semi-supervised learning[J]. Journal of Scientific
Computing, 2018, 74(3): 1241-1263. [38] 李斌, 李德来, 张琼. 基于稀疏表示的 B 型超声图像超分辨重建算法[J]. 中国医疗器械信息, 2014, 20(7): 4-7. Li B,Li DL,Zhang Q. A super - resolution reconstruction algorithm based on sparse representation of B - type ultrasonic images[J]. China Medical Device Information , 2014, 20(7): 4-7. [39]
Dong C, Loy C C, He K, et al. Learning a deep convolutional network
for image super-resolution[C] // European conference on computer vision.
Springer, Cham, 2014: 184-199. [40] 邢晓羊,魏敏,符颖.基于特征损失的医学图像超分辨率重建[J].计算机工程与应用,2018,54(20):202-207. Xing XY,Wei M,Fu Y. Super-resolution reconstruction of medical images based on feature loss[J]. Computer Engineering and Applications , 2018,54(20):202-207. [41] 高媛,刘志,秦品乐,等.基于深度残差生成对抗网络的医学影像超分辨率算法[J].计算机应用,2018,9:2689-2695. Gao Y,Liu Z,Qin PL, et al. Super-resolution
algorithm of medical image based on deep residuals to generate
adversarial network[J]. Journal of Computer Applications , 2018,
9:2689-2695. [42]
Oktay O, Ferrante E, Kamnitsas K, et al. Anatomically constrained
neural networks (ACNNs): application to cardiac image enhancement and
segmentation[J]. IEEE transactions on medical imaging, 2018, 37(2):
384-395. [43]
Li H, Gao Y, Dong J, et al. Super-Resolution Based on Noise Resistance
Deep Convolutional Network[C]// Proceedings of the 2018 6th
International Conference on Bioinformatics and Computational Biology.
Switzerland :ACM, 2018: 88-94. [44]
Caballo M, Fedon C, Brombal L, et al. Development of 3D patient-based
super-resolution digital breast phantoms using machine learning[J].
Physics in Medicine & Biology, 2018, 63(22): 225017. [45]
Hong X, Zan Y, Weng F, et al. Enhancing the Image Quality via
Transferred Deep Residual Learning of Coarse PET Sinograms[J]. IEEE
transactions on medical imaging, 2018, 37(10): 2322-2332.
|