[1] Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation [J]. Science., 1999,285 (5425) :221-227. [2] Chen HY, Fermin A, Vardhana S, et al. Galectin-3 negatively regulates TCR-mediated CD4+ T-Cell activation at the immunological synapse[J]. Procceedings of the national academy of sciences of the USA,2009,106(34):14496-14501. [3] Hafeman DG, Von TV, Mcconnell HM. Specific antibody-dependent interactions between macrophages and lipid haptens in planar lipid monolayers[J]. Procceedings of the national academy of sciences of the USA, 1981,78(7):4552-4556. [4] Toomre D, Axelrod D. Chapter 2 – Total Internal Reflection Fluorescent Microscopy [J]. Cell biology, 2006,129(1):19-28. [5] Klar TA, Hell SW. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics letter,1999,24(14):954-956. [6] Hell SW, Sahl SJ, Bates M, et al. The 2015 super-resolution microscopy roadmap[J]. Journal of physics D-applied physics, 2015,48(44):443001. [7] 张弘, 冯继宏, 高辛未,等. 受激发损耗(STED)显微术及在生物邻域的应用[J]. 智慧健康, 2015,1(2):12-16. Zhang H, Feng JH, Gao XW, et al. The stimulated emission depletion microscopy (STED)& application in the biology field[J]. Smart healthcare, 2015,1(2):12-16. [8] 李帅, 匡翠方, 丁志华,等. 受激发射损耗显微术(STED)的机理及进展研究[J]. 激光生物学报, 2013,22(2):104-113. Li Shuai, Kuang CF, Ding ZH, et al. The mechanism and research development of the stimulated emission depletion microscopy (STED) [J]. Laser biology, 2013,22(2):104-113. [9] Evanko D. Primer: fluorescence imaging under the diffraction limit[J]. Nature Methods, 2009,6(1):19-20. [10] Dunsby C, Neil MAA, French PMW. A STED-FLIM microscope applied to imaging the natural killer cell immune synapse[C]. Proceedings of the SPIE-The International Society for Optical Engineering, 2011,7903(1):121-128. [11] Rak GD, Mace EM, Banerjee PP,et al, Orange JS. Natural Killer Cell Lytic Granule Secretion Occurs through a Pervasive Actin Network at the Immune Synapse[J]. Communicative & Integrative Biology, 2012,9(2):e1001151-186. [12] Mace EM, Orange JS. Dual channel STED nanoscopy of lytic granules on actin filaments in natural killer cells[J]. Communicative & Integrative Biology, 2012,5(2):184-186. [13] Mace EM, Orange JS. Visualization of the Immunological Synapse by Dual Color Time-gated Stimulated Emission Depletion (STED) Nanoscopy[J]. Journal of visualized experiments, 2014,(85):1-6. [14] Ashdown GW, Burn GL, Williamson DJ, et al. Live-Cell Super-resolution Reveals F-Actin and Plasma Membrane Dynamics at the T Cell Synapse[J]. Biophysical Journal, 2017,112(8):1703. [15] Tinnefeld P, Eggeling C, Hell SW. Far-field optical nanoscopy[J]. Analytical and Bioanalytical Chemistry, 2016, 408(10):2377-2379. [16] Roumier A, Olivo-Marin JC, Arpin M, et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation[J]. Immunity,2001,15(5):715-728. [17] Huang ZJ, Haugland RP, You WM, et al. Phallotoxin and actin binding assay by fluorescence enhancement[J]. Analytical biochemistry, 1992,200(1):199-204. [18] Anderl J, Echner H, Faulstich H. Chemical modification allows phallotoxins and amatoxins to be used as tools in cell biology[J]. Beilstein Journal of Organic Chemistry, 2012,8(1):2072-2084. [19] Lukinavi??ius G, Reymond L, D’Este E, et al. Fluorogenic probes for live-cell imaging of the cytoskeleton[J]. Nature Methods, 2014,11(7):731-733. [20] Riedl J, Crevenna AH, Kessenbrock K, et al. Lifeact: a versatile marker to visualize F-actin[J]. Nature Methods, 2008,5(7):605-607. [21] Cardo L, Thomas SG, Mazharian A, et al. Accessible Synthetic Probes for Staining Actin inside Platelets and Megakaryocytes by Employing Lifeact Peptide[J]. Chembiochem. 2015,16(11):1680-1688. [22] Xu K, Zhong G, Zhuang X. Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons[J]. Science , 2013,339(6118):452-456. [23] Monks CR, Freiberg BA, Kupfer H,et al. Pillars article: Three-dimensional segregation of supramolecular activation clusters in T cells[J]. Nature. 1998. 395: 82-86. [24] Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation[J]. Science, 1999, 285(5425):221-227. [25] Zheng P, Bertolet G, Chen Y, et al. Super-resolution Imaging of the Natural Killer Cell Immunological Synapse on a Glass-supported Planar Lipid Bilayer[J]. Journal of visualized experiments, 2015,(96):e52502. [26] Hell SW, Lindek S, Cremer C, et al. Measurement of the 4Pi-confocal point spread function proves 75 nm resolution[J]. Applied physics letters, 1994,64(11):1335-1337. [27] Brown ACN, Oddos S, Dobbie IM, et al. Correction: Remodelling of Cortical Actin Where Lytic Granules Dock at Natural Killer Cell Immune Synapses Revealed by Super-Resolution Microscopy[J]. Plos Biology, 2012,10(8):e1001152 [28] Jang JH, Huang Y, Zheng P, et al. Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics[J]. Journal of immunology, 2015,195(3):1320-1330. [29] 林玮,褚以微. 免疫突触形成的生物学特点及其光学成像研究[J]. 生物化学与生物物理进展, 2017, 44(12):1066-1073. Lin W, Chu YW, The biological properties of immunology synapse information and the research of imaing[J].Progress in Biochemistry and Biophysics,2017,44(12):1066-1073. [30] 张玉玲, 俞钟, 李海亮. NK细胞免疫缺陷在急性白血病免疫逃逸中的研究进展[J].赣南医学院学报,2018, 38(2):186-190. Zhang YL, Yu Z, Li HL, NK cell immune deficiency in the research development of acute leukemia immune escape[J]. Journal of Gannan Medical University,2018,38(2):186-190. [31] 臧福才, 刘明月, 刘敏,等. 不同行为特征肺癌小鼠血管内皮生长因子表达及NK细胞的活性差异研究[J].中国医药导报,2018,15(15):18-21. Zang FC,Liu MY,Liu M,et al. Study on the differences of the expression of vascular endothelial growth factor and the activity of NK cells in lung cancer mice with different behavior characteristics[J]. China Medical Herald ,2018,15(15):18-21.
|