设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
受激发射损耗显微超分辨成像技术在免疫突触中的研究进展

Research tendency on stimulated emission depletion super-resolution imaging technology in immunological synapse

作者: 高辛未  张硕晨  黄珊  朱书缘  冯继宏 
单位:北京工业大学生命科学与生物工程学院(北京 100124)
关键词: 自然杀伤细胞;  免疫突触;  受激发射损耗显微镜;  荧光探针;  生物芯片 
分类号:R318.04
出版年·卷·期(页码):2019·38·5(530-534)
摘要:

由于光学衍射的限制,传统光学显微镜只能看到免疫突触(immunological synapse,IS)(>200nm)的轮廓,因此在观察嵌合抗原受体(chimeric antigen receptor, CAR)修饰的自然杀伤(native killer, NK)细胞靶向杀伤肿瘤细胞时,NK细胞的IS形成过程中会丢掉很多信息。受激发射损耗(stimulated emission depletion, STED)显微镜的出现为IS的研究提供了有力工具。本文概述了STED超分辨成像技术的基本原理,分析了成像过程中的技术难点,介绍了在IS领域中与STED成像技术结合使用的荧光探针、生物芯片的研究新进展,探讨并展望了STED超分辨显微技术在IS研究领域的意义和未来发展方向。

Due to the limitation of optical diffraction, traditional optical microscope has difficulty in observing the fine structures (<200nm) of immunological synapse(IS). Therefore, a lot of valuable information is lost in observing NK cells formation process when NK cells targeted kill tumor cells. Stimulated emission depletion (STED) microscopy is a powerful tool in the research of IS. In this paper, we review the basic principle of STED and analyze the technical difficulties in the imaging process. Moreover, the research progress of fluorescent probe and biological chip used in IS field combined with STED are also introduced in this paper. Finally, the potential significance and future development of STED in the IS research filed are discussed and prospected.

参考文献:

[1]          Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation [J]. Science., 1999,285 (5425) :221-227.

[2]          Chen HY, Fermin A, Vardhana S, et al. Galectin-3 negatively regulates TCR-mediated CD4+ T-Cell activation at the immunological synapse[J]. Procceedings of the national academy of sciences of the USA,2009,106(34):14496-14501.

[3]          Hafeman DG, Von TV, Mcconnell HM. Specific antibody-dependent interactions between macrophages and lipid haptens in planar lipid monolayers[J]. Procceedings of the national academy of sciences of the USA, 1981,78(7):4552-4556.

[4]          Toomre D, Axelrod D. Chapter 2 – Total Internal Reflection Fluorescent Microscopy [J]. Cell biology, 2006,129(1):19-28.

[5]          Klar TA, Hell SW. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics letter,1999,24(14):954-956.

[6]          Hell SW, Sahl SJ, Bates M, et al. The 2015 super-resolution microscopy roadmap[J]. Journal of physics D-applied physics, 2015,48(44):443001.

[7]          张弘, 冯继宏, 高辛未,等. 受激发损耗(STED)显微术及在生物邻域的应用[J]. 智慧健康, 2015,1(2):12-16.

       Zhang H, Feng JH, Gao XW, et al. The stimulated emission depletion microscopy (STED)& application in the biology field[J]. Smart healthcare, 2015,1(2):12-16.

[8]          李帅, 匡翠方, 丁志华,等. 受激发射损耗显微术(STED)的机理及进展研究[J]. 激光生物学报, 2013,22(2):104-113.

       Li Shuai, Kuang CF, Ding ZH, et al. The mechanism and research development of the stimulated emission depletion microscopy (STED) [J]. Laser biology, 2013,22(2):104-113.

[9]          Evanko D. Primer: fluorescence imaging under the diffraction limit[J]. Nature Methods, 2009,6(1):19-20.

[10]        Dunsby C, Neil MAA, French PMW. A STED-FLIM microscope applied to imaging the natural killer cell immune synapse[C]. Proceedings of the SPIE-The International Society for Optical Engineering, 2011,7903(1):121-128.

[11]        Rak GD, Mace EM, Banerjee PP,et al, Orange JS. Natural Killer Cell Lytic Granule Secretion Occurs through a Pervasive Actin Network at the Immune Synapse[J]. Communicative & Integrative Biology, 2012,9(2):e1001151-186.

[12]        Mace EM, Orange JS. Dual channel STED nanoscopy of lytic granules on actin filaments in natural killer cells[J]. Communicative & Integrative Biology, 2012,5(2):184-186.

[13]        Mace EM, Orange JS. Visualization of the Immunological Synapse by Dual Color Time-gated Stimulated Emission Depletion (STED) Nanoscopy[J]. Journal of visualized experiments, 2014,(85):1-6.

[14]    Ashdown GW, Burn GL, Williamson DJ, et al. Live-Cell Super-resolution Reveals F-Actin and Plasma Membrane Dynamics at the T Cell Synapse[J]. Biophysical Journal, 2017,112(8):1703.

[15]        Tinnefeld P, Eggeling C, Hell SW. Far-field optical nanoscopy[J]. Analytical and Bioanalytical Chemistry, 2016, 408(10):2377-2379.

 [16]      Roumier A, Olivo-Marin JC, Arpin M, et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation[J]. Immunity,2001,15(5):715-728.

[17]        Huang ZJ, Haugland RP, You WM, et al. Phallotoxin and actin binding assay by fluorescence enhancement[J]. Analytical biochemistry, 1992,200(1):199-204.

[18]        Anderl J, Echner H, Faulstich H. Chemical modification allows phallotoxins and amatoxins to be used as tools in cell biology[J]. Beilstein Journal of Organic Chemistry, 2012,8(1):2072-2084.

[19]        Lukinavi??ius G, Reymond L, D’Este E, et al. Fluorogenic probes for live-cell imaging of the cytoskeleton[J]. Nature Methods, 2014,11(7):731-733.

[20]        Riedl J, Crevenna AH, Kessenbrock K, et al. Lifeact: a versatile marker to visualize F-actin[J]. Nature Methods, 2008,5(7):605-607.

[21]        Cardo L, Thomas SG, Mazharian A, et al. Accessible Synthetic Probes for Staining Actin inside Platelets and Megakaryocytes by Employing Lifeact Peptide[J]. Chembiochem. 2015,16(11):1680-1688.

[22]        Xu K, Zhong G, Zhuang X. Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons[J]. Science , 2013,339(6118):452-456.

[23]        Monks CR, Freiberg BA, Kupfer H,et al. Pillars article: Three-dimensional segregation of supramolecular activation clusters in T cells[J]. Nature. 1998. 395: 82-86.

[24]        Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation[J]. Science, 1999, 285(5425):221-227.

 [25]      Zheng P, Bertolet G, Chen Y, et al. Super-resolution Imaging of the Natural Killer Cell Immunological Synapse on a Glass-supported Planar Lipid Bilayer[J]. Journal of visualized experiments, 2015,(96):e52502.

[26]        Hell SW, Lindek S, Cremer C, et al. Measurement of the 4Pi-confocal point spread function proves 75 nm resolution[J]. Applied physics letters, 1994,64(11):1335-1337.

[27]        Brown ACN, Oddos S, Dobbie IM, et al. Correction: Remodelling of Cortical Actin Where Lytic Granules Dock at Natural Killer Cell Immune Synapses Revealed by Super-Resolution Microscopy[J]. Plos Biology, 2012,10(8):e1001152

[28]    Jang JH, Huang Y, Zheng P, et al. Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics[J]. Journal of immunology, 2015,195(3):1320-1330.

[29]    林玮,褚以微. 免疫突触形成的生物学特点及其光学成像研究[J]. 生物化学与生物物理进展, 2017, 44(12):1066-1073.

Lin W, Chu YW, The biological properties of immunology synapse information and the research of imaing[J].Progress in Biochemistry and Biophysics,2017,44(12):1066-1073.

[30]    张玉玲, 俞钟, 李海亮. NK细胞免疫缺陷在急性白血病免疫逃逸中的研究进展[J].赣南医学院学报,2018, 38(2):186-190.

       Zhang YL, Yu Z, Li HL, NK cell immune deficiency in the research development of acute leukemia immune escape[J]. Journal of Gannan Medical University,2018,38(2):186-190.

[31] 臧福才, 刘明月, 刘敏,等. 不同行为特征肺癌小鼠血管内皮生长因子表达及NK细胞的活性差异研究[J].中国医药导报,2018,15(15):18-21.

   Zang FC,Liu MY,Liu M,et al. Study on the differences of the expression of vascular endothelial growth factor and the activity of NK cells in lung cancer mice with different behavior characteristics[J].  China Medical Herald

,2018,15(15):18-21.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com