[1] 陈佳, 王得水, 谷凯云,等. 人工心脏泵辅助对左心室血流动力学影响的数值研究[J]. 北京生物医学工程, 2015,34 (4):331-339. Chen J, wang DS, Gu KY, et al. Numerical research of the artificial heart blood pump’s effect on left ventricular hemodynamics[J]. Beijing Biomedical Engineering, 2015,34 (4):331-339. [2] Tchantchaleishvili V, Sagebin F, Ross RE, et al. Evaluation and treatment of pump thrombosis and hemolysis[J]. Annals of Cardiothoracic Surgeryblock, 2014, 6(1):490-495. [3] Moazami N, Hoercher KJ, Fukamachi K, et al. Mechanical circulatory support for heart failure: past, present and a look at the future[J]. Expert Review of Medical Devices, 2013, 10(1):55-71. [4] 许剑, 王妍, 周娜,等. 人工辅助心脏国际发展趋势概述[J]. 中西医结合心血管病电子杂志, 2018, 6(7):16-17. [5] Kirklin JK, Naftel DC, Pagani FD, et al. Sixth INTERMACS annual report: A 10,000-patient database[J]. The Journal of Heart and Lung Transplantation, 2014, 33(6):555-564. [6] Montalto A , Loforte A , Musumeci F , et al. Mechanical circulatory support in end-stage heart failure[M]. Berlin:Springer International Publishing, 2017. [7] Karimov JH, Tong ZY, Byram N. The axial continuous-flow blood pump Bench evaluation of changes in flow associated with changes of inflow cannula angle.[J]. The Journal of Heart and Lung Transplantation, 2017, 36(1):106-112. [8] 许剑, 张栩曼, 赵廷彪,等. 心室辅助装置术后血栓的判定研究[J]. 临床医药文献电子杂志, 2018, (30):148. [9] Starling RC, Moazami N, Silvestry SC, et al. Unexpected abrupt increase in left ventricular assist device thrombosis[J]. New England Journal of Medicine, 2014, 370(1):33-40. [10] John R, Kamdar F, Liao K, et al. Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy[J]. Annals of Thoracic Surgery, 2008, 86(4):1277-1235. [11] Govindarajan V, Rakesh V, Reifman J, et al. Computational study of thrombus formation and clotting factor effects under venous flow conditions[J]. Biophysical Journal, 2016, 110(8):1869-1885. [12] 易树, 尹光福, 郑昌琼. 生物材料表面界面特性与其血液相容性的关系[J]. 中国口腔种植学杂志, 2003,8(2):83-88. [13] 王同显,杨志夏. 正确理解凝血机制与凝血试验的临床意义[J]. 中国输血杂志,2014,27(12):1364-1366. Wang TX,Yang ZX. Prehensive understanding of clinical significance of coagulation mechanism and coagulation tests[C]. Chinese Journal of Blood Transfusion,2014,27(12):1364-1366. [14] Ledford ID, Labedi M, Kfoury AG, et al. 235 Thrombus within the HeartMate II left ventricular assist device (LVAD): Are All Clots Created Equal[J]. Journal of Heart and Lung Transplantation, 2012, 31(4):S85-S86. [15] Blitz A. Pump thrombosis—a riddle wrapped in a mystery inside an enigma[J]. Annals of Cardiothoracic Surgery, 2014, 3(5):450. [16] Sheriff J, Soares JS, Xenos M, et al. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices[J]. Annals of Biomedical Engineering, 2013, 41(6):1279-1296. [17] Gaurav G , Michalis X , Yared A , et al. Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance[J]. Plos One, 2012, 7(3):e32463. [18] Sorensen EN, Burgreen GW, Wagner WR, et al. Computational simulation of platelet deposition and activation: I. Model development and properties[J]. Annals of Biomedical Engineering, 1999, 27(4):436-448. [19] Jo?o S Soares, Sheriff J, Bluestein D. A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories[J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(6):1127-1141. [20] Xenos M, Girdhar G, Alemu Y, et al. Device Thrombogenicty Emulator (DTE) – Design optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet MHV Designs[J]. Journal of Biomechanics, 2010, 43(12):2400-2409. [21] 余佳佳. 基于溶凝血分析的轴流血泵转子外形优化设计[D]. 北京:清华大学, 2016. Yu JJ. The shape optimization of the rotor blades of an axial blood pump based on the analysis of hemolysis and thromboembolic performance[D].Beijing:Tsinghua University, 2016. [22] 裔英明. 高切应变率条件下血栓孔口流动的数值模拟[D]. 扬州:扬州大学, 2016. Yi YM. Numerical simulation of thrombus formation on the wall by high shear rate on orifice flow[D]. Yangzhou:Yangzhou University, 2016. [23] Biological Evaluation of Medical Devices—Part 4: Selection of Tests for Interactions with Blood : ISO10993-4:2017[S/OL].[2017-4].https://www.iso.org/standard/63448.html. [24] 喻琴梅, 周翔, 牛挺. 体外血栓模型设计及标准化探讨[J].华西医学,2012,27(2):210-212. [25] 侯丽, 乔春霞, 赵增琳. 解读ISO 10993-4:2017《医疗器械生物学评价第4部分:与血液相互作用试验选择》[J]. 中国医疗设备, 2018, 33(11):12-17. Hou L, Qiao CX, Zhao ZL. Brief Introduction of 10993-4:2017 Biological Evaluation of Medical Devices——Part 4: Selection of Tests for Interactions with Blood[J]. China Medical Devices, 2018, 33(11):12-17. [26] Uriel N, Han J, Morrison KA, et al. Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: A multifactorial phenomenon[J]. The Journal of Heart and Lung Transplantation, 2014, 33(1):51-59. [27] 李冰一, 蔺嫦燕. 关于叶轮血泵血栓问题的研究进展[J]. 国际生物医学工程杂志, 2002, 25(1):43-46. Li BY, Lin CY. Advances in research on the impeller blood pump’s thrombus formation[J]. International Journal of Biomedical Engineering, 2002, 25(1):43-46. [28] 李卫东, 姚奇, 杜建军,等. 基于CFD的液悬浮人工心脏泵叶轮入口优化分析[J]. 北京生物医学工程, 2017,36(1):21-28. Li WD, Yao Q, Du JJ, et al. Optimization analysis for impeller inlet of artificial heart pump with hydraulic suspension based on CFD[J]. Beijing Biomedical Engineering, 2017,36(1):21-28. [29] Consolo F, Dimasi A, Rasponi M, et al. Microfluidic approaches for the assessment of blood cell trauma: A focus on thrombotic risk in mechanical circulatory support devices[J]. The International Journal of Artificial Organs, 2016, 39(4):184-193. [30] Fraser KH, Zhang T, Taskin ME, et al. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index[J]. Journal of Biomechanical Engineering, 2012, 134(8):081002. [31] 柳光茂, 周建业, 孙寒松,等. 轴流血泵入口管道流场的数值模拟与实验研究[J]. 北京生物医学工程, 2018, 37(3):228-234. Liu GM, Zhou JY, Sun HS, et al. Numerical simulation and experimental study on the flow field in the inflow cannula of an axial blood pump[J]. Beijing Biomedical Engineering, 2018, 37(3):228-234. [32] Thamsen B, Mevert R, Lommel M, et al. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study[J]. The International Journal of Artificial Organs, 2016, 39(4):178-183. [33] 钱坤喜, 曾培, 茹伟民,等. 叶轮式心脏泵内防止血栓形成的新方法[J]. 生物医学工程学杂志, 2003, 20(3):534-536. Qian KX, Zeng P, Ru W M, et al. A new approach for improving antithrombogenicity in centrifugal pump[J]. Biomedical Engineering Journal, 2003, 20(3):534-536. [34] 韩露, 王伟, 刘金龙,等. 碟形血泵内部流场的数值仿真与优化[J]. 中国胸心血管外科临床杂志, 2016,3(4):380-385. Han L, Wang W, Liu JL, et al. Computational evaluation of the fluid dynamics of a disk blookd pump[J]. Chinese Journal of Thoracic and Cardiovascular Surgery, 2016,3(4):380-385. [35] 潘长江.等离子体表面改性涤纶材料的抗凝血性能研究[D]. 成都:西南交通大学, 2002. [36] 武亚东, 周建业, 胡盛寿,等. 两种钛合金成品表面特性表征及血液相容性的对比研究[J]. 北京生物医学工程, 2017,36(3):221-228. Wu YD, Zhou JY, Hu SS, et al. Comparative research of two kinds of titanium alloy products’ sureface feature representation and hemocompatibility[J]. Beijing Biomedical Engineering, 2017(3):221-228. [37] 李丹, 吴静娴, 刘小莉,等. 血液接触材料表面抗血栓改性新策略:构建纤溶活性表面[J]. 高分子学报, 2016, 7(7):850-859. [38] Inagaki N, Tasaka S, Horiuchi T, et al. Surface modification of poly(aryl ether ether ketone) film by remote oxygen plasma[J]. Journal of Applied Polymer Science, 1998, 68(2):271-279. [39] 刘焕萍, 孙辉. 聚醚醚酮表面接枝O-羧甲基壳聚糖及其血液相容性研究[J]. 中国塑料, 2016, 30(2):39-42. Liu HP, Sun H. Surface modification of PEEK by immobilization of O-carboxymethyl chitosan for improvement of blood compatibility[J]. China Plastics, 2016, 30(2):39-42. [40] 王军, 刘莹. 316L不锈钢钝化膜的耐腐蚀性和血液相容性[J]. 上海交通大学学报(自然版), 2018, 52(5):593-598. Wang J, Liu Y. Corrosion resistance and hemocompatibility of passivated 316L stainless steel[J]. Journal of Shanghai Jiaotong University, 2018, 52(5):593-598. [41] Menon AK, G?tzenich A, Sassmannshausen H, et al. Low stroke rate and few thrombo-embolic events after HeartMate II implantation under mild anticoagulation.[J]. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, 2012, 42(2):319-323. [42] Cooper SL, Fabrizius DJ, Grasel TG. Methods of assessment of thrombosis ex vivo.[J]. Annals of the New York Academy of Sciences, 2010, 516(1):572-585.
|