设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
叶轮式连续型血泵血栓评价方法及关键因素分析

Evaluation methods and key factors of impeller blood pump thrombosis

作者: 张文静  程云章  叶葳  唐洁 
单位:上海理工大学上海介入医疗器械工程技术研究中心(上海 200093) 丰凯医疗器械(上海)有限公司(上海 201138)
关键词: 心力衰竭;  叶轮式连续型血泵;  血栓形成;  血栓评价 
分类号:R318.6
出版年·卷·期(页码):2019·38·5(523-529)
摘要:

血栓的产生会影响血泵运转,同时也可能给患者带来栓塞或中风等不良并发症。新一代叶轮式连续型血泵体积小、各部件之间间隙小,这些特点使其更易形成血栓,从而导致设备功能障碍。因此血栓评价对考察叶轮式连续型血泵的安全性和有效性具有重要意义。本文从血泵运转中血栓形成的过程及血栓的种类入手,首先对比了研发过程中血栓评价的三种方法,即数值模拟、体外试验、体内试验,分析发现体内试验评价血栓更具有说服力。然后从血泵设计、材料选择及加工、抗凝三大主要因素分析对血栓形成的影响:血泵的设计决定血液流场分布,材料的选择及加工影响其抗凝血程度,抗凝不足或过度也将产生不良影响。最后对叶轮式连续型血泵血栓评价方法进行了总结和展望。

Thrombosis can affect the operation of the blood pump and cause embolism or strokes and other adverse complications. The new generation of impeller continuous blood pumps have smaller sizes and smaller gaps between different parts of the pump. These characteristics make the blood pumps more likely to form thrombosis, resulting in equipment dysfunction. Therefore, thrombosis evaluation is of great significance to the safety and effectiveness of blood pumps. This article starts with the process of thrombosis and types of thrombosis, analyzs and compares three methods of thrombosis evaluation in the research: numerical simulation, vitro test and vivo test. The result finds vivo test is more convinced. Then the article analyzes three major factors on thrombosis, including blood pump design, material selection and processing, anticoagulation: the design of blood pump determines flow field distribution, material selection and processing affects its antithrombotic property, insufficient or excessive anticoagulation has adverse effects. Finally, the evaluation methods of impeller continuous blood pump thrombosis are summarized and prospected.

参考文献:

[1] 陈佳, 王得水, 谷凯云,等. 人工心脏泵辅助对左心室血流动力学影响的数值研究[J]. 北京生物医学工程, 2015,34 (4):331-339.

Chen J, wang DS, Gu KY, et al. Numerical research of the artificial heart blood pump’s effect on left ventricular hemodynamics[J]. Beijing Biomedical Engineering, 2015,34 (4):331-339.

[2] Tchantchaleishvili V, Sagebin F, Ross RE, et al. Evaluation and treatment of pump thrombosis and hemolysis[J]. Annals of Cardiothoracic Surgeryblock, 2014, 6(1):490-495.

[3] Moazami N, Hoercher KJ, Fukamachi K, et al. Mechanical circulatory support for heart failure: past, present and a look at the future[J]. Expert Review of Medical Devices, 2013, 10(1):55-71.

[4] 许剑, 王妍, 周娜,等. 人工辅助心脏国际发展趋势概述[J]. 中西医结合心血管病电子杂志, 2018, 6(7):16-17.

[5] Kirklin JK, Naftel DC, Pagani FD, et al. Sixth INTERMACS annual report: A 10,000-patient database[J]. The Journal of Heart and Lung Transplantation, 2014, 33(6):555-564.

[6] Montalto A , Loforte A , Musumeci F , et al. Mechanical circulatory support in end-stage heart failure[M]. Berlin:Springer International Publishing, 2017.

[7] Karimov JH, Tong ZY, Byram N. The axial continuous-flow blood pump Bench evaluation of changes in flow associated with changes of inflow cannula angle.[J]. The Journal of Heart and Lung Transplantation, 2017, 36(1):106-112.

[8] 许剑, 张栩曼, 赵廷彪,等. 心室辅助装置术后血栓的判定研究[J]. 临床医药文献电子杂志, 2018, (30):148.

[9] Starling RC, Moazami N, Silvestry SC, et al. Unexpected abrupt increase in left ventricular assist device thrombosis[J]. New England Journal of Medicine, 2014, 370(1):33-40.

[10] John R, Kamdar F, Liao K, et al. Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy[J]. Annals of Thoracic Surgery, 2008, 86(4):1277-1235.

[11] Govindarajan V, Rakesh V, Reifman J, et al. Computational study of thrombus formation and clotting factor effects under venous flow conditions[J]. Biophysical Journal, 2016, 110(8):1869-1885.

[12] 易树, 尹光福, 郑昌琼. 生物材料表面界面特性与其血液相容性的关系[J]. 中国口腔种植学杂志, 2003,8(2):83-88.

[13] 王同显,杨志夏. 正确理解凝血机制与凝血试验的临床意义[J]. 中国输血杂志,2014,27(12):1364-1366.

       Wang TX,Yang ZX. Prehensive understanding of clinical significance of coagulation mechanism and coagulation tests[C]. Chinese Journal of Blood Transfusion,2014,27(12):1364-1366.

 [14] Ledford ID, Labedi M, Kfoury AG, et al. 235 Thrombus within the HeartMate II left ventricular assist device (LVAD): Are All Clots Created Equal[J]. Journal of Heart and Lung Transplantation, 2012, 31(4):S85-S86.

[15] Blitz A. Pump thrombosis—a riddle wrapped in a mystery inside an enigma[J]. Annals of Cardiothoracic Surgery, 2014, 3(5):450.

[16] Sheriff J, Soares JS, Xenos M, et al. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices[J]. Annals of  Biomedical Engineering, 2013, 41(6):1279-1296.

[17] Gaurav G , Michalis X , Yared A , et al. Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance[J]. Plos One, 2012, 7(3):e32463.

[18] Sorensen EN, Burgreen GW, Wagner WR, et al. Computational simulation of platelet deposition and activation: I. Model development and properties[J]. Annals of Biomedical Engineering, 1999, 27(4):436-448.

[19] Jo?o S Soares, Sheriff J, Bluestein D. A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories[J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(6):1127-1141.

[20] Xenos M, Girdhar G, Alemu Y, et al. Device Thrombogenicty Emulator (DTE) – Design optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet MHV Designs[J]. Journal of Biomechanics, 2010, 43(12):2400-2409.

[21] 余佳佳. 基于溶凝血分析的轴流血泵转子外形优化设计[D]. 北京:清华大学, 2016.

        Yu JJ. The shape optimization of the rotor blades of an axial blood pump based on the analysis of hemolysis and thromboembolic performance[D].Beijing:Tsinghua University, 2016.

[22] 裔英明. 高切应变率条件下血栓孔口流动的数值模拟[D]. 扬州:扬州大学, 2016.

Yi YM. Numerical simulation of thrombus formation on the wall by high shear rate on orifice flow[D]. Yangzhou:Yangzhou University, 2016.

[23] Biological Evaluation of Medical Devices—Part 4: Selection of Tests for Interactions with Blood : ISO10993-4:2017[S/OL].[2017-4].https://www.iso.org/standard/63448.html.

[24] 喻琴梅, 周翔, 牛挺. 体外血栓模型设计及标准化探讨[J].华西医学,2012,27(2):210-212.

[25] 侯丽, 乔春霞, 赵增琳. 解读ISO 10993-4:2017《医疗器械生物学评价第4部分:与血液相互作用试验选择》[J]. 中国医疗设备, 2018, 33(11):12-17.

Hou L, Qiao CX, Zhao ZL. Brief Introduction of 10993-4:2017 Biological Evaluation of Medical Devices——Part 4: Selection of Tests for Interactions with Blood[J]. China Medical Devices, 2018, 33(11):12-17.

[26] Uriel N, Han J, Morrison KA, et al. Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: A multifactorial phenomenon[J]. The Journal of Heart and Lung Transplantation, 2014, 33(1):51-59.

[27] 李冰一, 蔺嫦燕. 关于叶轮血泵血栓问题的研究进展[J]. 国际生物医学工程杂志, 2002, 25(1):43-46.

       Li BY, Lin CY. Advances in research on the impeller blood pump’s thrombus formation[J]. International Journal of Biomedical Engineering, 2002, 25(1):43-46.

[28] 李卫东, 姚奇, 杜建军,等. 基于CFD的液悬浮人工心脏泵叶轮入口优化分析[J]. 北京生物医学工程, 2017,36(1):21-28.

       Li WD, Yao Q, Du JJ, et al. Optimization analysis for impeller inlet of artificial heart pump with hydraulic suspension based on CFD[J]. Beijing Biomedical Engineering, 2017,36(1):21-28.

[29] Consolo F, Dimasi A, Rasponi M, et al. Microfluidic approaches for the assessment of blood cell trauma: A focus on thrombotic risk in mechanical circulatory support devices[J]. The International Journal of Artificial Organs, 2016, 39(4):184-193.

[30] Fraser KH, Zhang T, Taskin ME, et al. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index[J]. Journal of Biomechanical Engineering, 2012, 134(8):081002.

[31] 柳光茂, 周建业, 孙寒松,等. 轴流血泵入口管道流场的数值模拟与实验研究[J]. 北京生物医学工程, 2018, 37(3):228-234.

Liu GM, Zhou JY, Sun HS, et al. Numerical simulation and experimental study on the flow field in the inflow cannula of an axial blood pump[J]. Beijing Biomedical Engineering, 2018, 37(3):228-234.

[32] Thamsen B, Mevert R, Lommel M, et al. A two-stage rotary blood pump design with potentially lower blood trauma: a computational study[J]. The International Journal of Artificial Organs, 2016, 39(4):178-183.

[33] 钱坤喜, 曾培, 茹伟民,等. 叶轮式心脏泵内防止血栓形成的新方法[J]. 生物医学工程学杂志, 2003, 20(3):534-536.

       Qian KX, Zeng P, Ru W M, et al. A new approach for improving antithrombogenicity in centrifugal pump[J]. Biomedical Engineering Journal, 2003, 20(3):534-536.

[34] 韩露, 王伟, 刘金龙,等. 碟形血泵内部流场的数值仿真与优化[J]. 中国胸心血管外科临床杂志, 2016,3(4):380-385.

       Han L, Wang W, Liu JL, et al. Computational evaluation of the fluid dynamics of a disk blookd pump[J]. Chinese Journal of Thoracic and Cardiovascular Surgery, 2016,3(4):380-385.

[35] 潘长江.等离子体表面改性涤纶材料的抗凝血性能研究[D]. 成都:西南交通大学, 2002.

[36] 武亚东, 周建业, 胡盛寿,等. 两种钛合金成品表面特性表征及血液相容性的对比研究[J]. 北京生物医学工程, 2017,36(3):221-228.

       Wu YD, Zhou JY, Hu SS, et al. Comparative research of two kinds of titanium alloy products’ sureface feature representation and hemocompatibility[J]. Beijing Biomedical Engineering, 2017(3):221-228.

[37] 李丹, 吴静娴, 刘小莉,等. 血液接触材料表面抗血栓改性新策略:构建纤溶活性表面[J]. 高分子学报, 2016, 7(7):850-859.

[38] Inagaki N, Tasaka S, Horiuchi T, et al. Surface modification of poly(aryl ether ether ketone) film by remote oxygen plasma[J]. Journal of Applied Polymer Science, 1998, 68(2):271-279.

[39] 刘焕萍, 孙辉. 聚醚醚酮表面接枝O-羧甲基壳聚糖及其血液相容性研究[J]. 中国塑料, 2016, 30(2):39-42.

       Liu HP, Sun H. Surface modification of PEEK by immobilization of O-carboxymethyl chitosan for improvement of blood compatibility[J]. China Plastics, 2016, 30(2):39-42.

[40] 王军, 刘莹. 316L不锈钢钝化膜的耐腐蚀性和血液相容性[J]. 上海交通大学学报(自然版), 2018, 52(5):593-598.

       Wang J, Liu Y. Corrosion resistance and hemocompatibility of passivated 316L stainless steel[J]. Journal of Shanghai Jiaotong University, 2018, 52(5):593-598.

[41] Menon AK, G?tzenich A, Sassmannshausen H, et al. Low stroke rate and few thrombo-embolic events after HeartMate II implantation under mild anticoagulation.[J]. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, 2012, 42(2):319-323.

[42] Cooper SL, Fabrizius DJ, Grasel TG. Methods of assessment of thrombosis ex vivo.[J]. Annals of the New York Academy of Sciences, 2010, 516(1):572-585.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com