设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
导航与机器人辅助颈椎螺钉内固定术的临床应用

Clinical application of cervical screw internal fixation under navigation and robot assistance

作者: 张琦  范明星  刘亚军  韩晓光  赵经纬  田伟 
单位:北京积水潭医院脊柱外科(北京 100035) 骨科机器人技术北京市重点实验室(北京 100035)
关键词: 导航;  机器人;  颈椎;  螺钉;  准确性 
分类号:R318.04
出版年·卷·期(页码):2019·38·5(504-507)
摘要:

目的 随着计算机技术和工业的发展,导航与手术机器人系统以其创伤小、手术操作时间短、精准、稳定和安全等特点,越来越多地运用在脊柱内固定手术中。本研究回顾性分析导航与机器人辅助颈椎螺钉内固定手术的临床应用病例,对其准确性和安全性进行评价。方法 纳入2006年1月至2019年8月于北京积水潭医院脊柱外科行导航或机器人辅助颈椎手术的患者369例。手术的主要评价指标包括螺钉置钉精确率、手术时间以及术后5 d内并发症发生率。根据Gertzbein-Robbins分类标准,对螺钉是否侵犯骨皮质的情况进行评估。结果 369例患者均顺利完成手术,其中导航手术283例、机器人手术86例,手术时间为(195.1±93.6)min。症状在术后明显缓解,术中与术后5 d内均未发生并发症。共置入颈椎螺钉1160枚,螺钉分类为A类1030枚、B类115枚、C类15枚。螺钉位置优秀率(A级)为88.8%,螺钉位置可接受率(A级+B级)为98.7%。 结论 导航与机器人系统辅助颈椎螺钉内固定术的准确性高、安全性好,是未来颈椎手术的发展方向。

Objective With the development of computer technology and industry, navigation and surgical robot systems are increasingly used in spine surgeries, because of their minimal invasiveness, short operation time, accuracy, stability and safety. This study retrospectively analyzed the clinical application of navigation and robot-assisted cervical screw placement, including accuracy and safety. Methods A total of 369 patients underwent navigation or robot-assisted cervical spine surgery at the Beijing Jishuitan Hospital between January 2006 and August 2019. The main measurements included the accuracy of screw placement, operation time, and complications within 5 days after surgery. The accuracy of screw placement was evaluated, according to the Gertzbein-Robbins classification criteria. Results All 369 patients completed their procedures, including 283 navigation guided procedures and 86 robot-assisted procedures. The operation time was 195.1±93.6 minutes. Symptoms were significantly relieved after surgery. No complications occurred during the surgery or within 5 days after surgery. A total of 1160 cervical screws were placed. 1030 screws were classified as Grade A, 115 as Grade B, and 15 as Grade C. The excellent screw position rate (Grade A) was 88.8%, and the acceptable rate (Grade A+B) was 98.7%. Conclusions Navigation and robotic system assisted cervical screw internal fixation is accurate and safe, and it is the direction for cervical spine surgery development.

参考文献:

[1]        Liu CY, Zygourakis CC, Yoon S, et al. Trends in utilization and cost of cervical spine surgery using the national inpatient sample database, 2001 to 2013 [J]. Spine, 2017,42(15):E906-E913.

[2]        Marquez-Lara A, Nandyala SV, Fineberg SJ,et al. Current trends in demographics, practice, and in-hospital outcomes in cervical spine surgery: a national database analysis between 2002 and 2011 [J]. Spine, 2014,39(6):476-481.

[3]        Baird EO, Egorova NN, McAnany SJ,et al. National trends in outpatient surgical treatment of degenerative cervical spine disease [J]. Global Spine Journal, 2014,4(3):143-150.

[4]        Grob D, Jeanneret B, Aebi M, Markwalder TM. Atlanto-axial fusion with transarticular screw fixation [J]. Journal of Bone & Joint Surgery (Br), 1991,73(6):972-976.

[5]        Sheng SR, Wang XY, Xu HZ,et al. Anatomy of large animal spines and its comparison to the human spine: a systematic review [J]. European Spine Journal, 2010,19(1):46-56.

[6]        Rampersaud YR, Simon DA, Foley KT. Accuracy requirements for image-guided spinal pedicle screw placement [J]. Spine, 2001,26(4):352-359.

[7]        Tian W, Weng C, Li Q, et al. Occipital-C2 transarticular fixation for occipitocervical instability associated with occipitalization of the atlas in patients with klippel-feil syndrome, using intraoperative 3-dimensional navigation system [J]. Spine, 2013,38(8):642-649.

[8]        Wen BT, Chen ZQ, Sun CG, et al. Three-dimensional navigation (O-arm) versus fluoroscopy in the treatment of thoracic spinal stenosis with ultrasonic bone curette: a retrospective comparative study [J]. Medicine (Baltimore), 2019,98(20):e15647.

[9]        Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using o-arm, robotic guidance, or freehand technique: a comparative study [J]. Spine, 2018,43(6):E373-E378.

[10]      Lefranc M, Peltier J. Evaluation of the ROSA Spine robot for minimally invasive surgical procedures [J]. Expert Review of Medical Devices, 2016,13(10):899-906.

[11]      Han X, Tian W, Liu Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial [J/OL]. Journal of Neurosurgery Spine, 2019:1-8 [2019-08-02].https://www.ncbi.nlm.nih.gov/pubmed/30738398.

[12]      Zhang Q, Han XG, Xu YF, et al. Robot-assisted versus fluoroscopy-guided pedicle screw placement in transforaminal lumbar interbody fusion for lumbar degenerative disease [J]. World Neurosurgery. 2019,125:e429-e434.

[13]      Tian W. Robot-assisted posterior C1-2 transarticular screw fixation for atlantoaxial instability: a case report [J]. Spine, 2016,41 Suppl 19:B2-B5.

[14]      Tian W, Wang H, Liu YJ. Robot-assisted anterior odontoid screw fixation: a case report [J]. Orthopaedic Surgery, 2016,8(3):400-404.

[15]      Tian W, Liu YJ, Liu B, et al. Guideline for posterior atlantoaxial internal fixation assisted by orthopaedic surgical robot [J]. Orthopaedic Surgery, 2019,11(2):160-166.

[16]      Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo [J]. Spine, 1990,15(1):11-14.

[17]      Abumi K, Shono Y, Taneichi H, Ito M, Kaneda K. Correction of cervical kyphosis using pedicle screw fixation systems [J]. Spine, 1999,24(22):2389-2396.

[18]      Karaikovic EE, Yingsakmongkol W, Gaines RW, Jr. Accuracy of cervical pedicle screw placement using the funnel technique [J]. Spine, 2001,26(22):2456-2462.

[19].     Tian W, Lang Z. Placement of pedicle screws using three-dimensional fluoroscopy-based navigation in lumbar vertebrae with axial rotation [J]. European Spine Journal, 2010,19(11):1928-1935.

[20]      Ludwig SC, Kramer DL, Balderston RA, Vaccaro AR, Foley KF, Albert TJ. Placement of pedicle screws in the human cadaveric cervical spine: comparative accuracy of three techniques [J]. Spine, 2000,25(13):1655-1667.

[21]      Rajasekaran S, Kanna PR, Shetty TA. Intra-operative computer navigation guided cervical pedicle screw insertion in thirty-three complex cervical spine deformities [J]. Journal of craniovertebral junction and spine, 2010,1(1):38-43.

[22]      Ishikawa Y, Kanemura T, Yoshida G, et al. Intraoperative, full-rotation, three-dimensional image (O-arm)-based navigation system for cervical pedicle screw insertion [J]. Journal of Neurosurgery Spine, 2011,15(5):472-478.

[23]      韩巍, 王军强, 林鸿, 等. 主从式长骨骨折复位机器人的实验研究[J]. 北京生物医学工程, 2015, 34(1):12-17.

      Han W,Wang JQ,Lin H,et al. Master-slave robot assisted fracture reduction in long bone shaft[J].Beijing  Biomedical Engineering, 2015, 34(1):12-17.

 

 

[24]    范明星, 刘亚军, 段芳芳, 等. 机器人辅助胸腰椎椎弓根螺钉内固定术的学习曲线和临床意义[J]. 骨科临床与研究杂志, 2018, 3(4):213-217.

       Fan MX,Liu YJ,Duan FF,et al. Learning curve and clinical outcomes of robot assisted thoracolumbar pedicle screw fixation[J]. 骨科临床与研究杂志, 2018, 3(4):213-217.

[25]      黄小海, 喻洪流, 张伟胜, 等. 索控式中央驱动上肢康复机器人[J]. 北京生物医学工程, 2018, 37(05):31-37.

       Huang XH,Yu HL,Zhang WS,et al. Center-driven upper limb rehabilitation robot for cable transmission[J].Beijing  Biomedical Engineering, 2018, 37(05):31-37.

[26]      Zamorano L, Li Q, Jain S, et al.Robotics in neurosurgery: state of the art and future technological challenges [J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2004,1(1):7-22.

[27]    田伟, 范明星, 刘亚军. 脊柱导航辅助机器人技术的现状及远期展望[J]. 北京生物医学工程, 2014, 33(5):527-531.

       Tian W,Fan MX,Liu YJ. Current status and long-term prospects in spinal navigation robot technology[J].Beijing  Biomedical Engineering, 2014, 33(5):527-531.

[28]      茅剑平, 范明星, 吴佳源, 等. 骨科机器人辅助齿状突螺钉内固定术9例报告[J]. 中国微创外科杂志, 2019,19(7):649-652.

       Mao JP,Fan MX,Wu JY,et al. Robot-assisted anterior odontoid screw fixation: report of 9 cases[J]. Chinese Journal of Minimally Invasive Surgery, 2019,19(7):649-652.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com