[1] Parkin DM, Pisani P, Ferlay J. Global cancer statistics [J]. CA: A Cancer Journal for Clinicians, 1999, 49(1): 33-64. [2] 陈万青, 张思维, 曾红梅, 等. 中国2010年恶性肿瘤发病与死亡 [J]. 中国肿瘤, 2014, 23(1): 1-10. Chen WQ, Zhang SW, Zeng HM, et al. Report of cancer incidence and mortality in China, 2010 [J]. China Cancer, 2014, 23(1): 1-10. [3] 李国东, 董新舒, 刘明. 直肠癌外科治疗进展 [J]. 中华肿瘤防治杂志, 2015, 22(5): 402-406. Li GD, Dong XS, Liu M. Progress of surgical treatment in rectal carcinoma [J]. Chinese Journal of Cancer Prevention and Treatment, 2015, 22(5): 402-406. [4] Dou Q, Yu L, Chen H, et al. 3D deeply supervised network for automated segmentation of volumetric medical images [J]. Medical Image Analysis, 2017, 41:40-54. [5] Soomro MH, Giunta G, Laghi A, et al. Segmenting MR Images by Level-Set Algorithms for Perspective Colorectal Cancer Diagnosis [C]//Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering. Berlin :Springer, 2017: 396-406. [6] van Heeswijk MM, Lambregts DM, van Griethuysen JJ, et al. Automated and semiautomated segmentation of rectal tumor volumes on diffusion-weighted MRI: can it replace manual volumetry? [J]. International Journal of Radiation Oncology Biology Physics, 2016, 94(4): 824-831. [7] Irving B, Cifor A, Papie? BW, et al. Automated colorectal tumour segmentation in DCE-MRI using supervoxel neighbourhood contrast characteristics [C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin:Springer, 2014: 609-616. [8] Trebeschi S, van Griethuysen JJ, Lambregts DM, et al. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR [J]. Scientific reports, 2017, 7(1): 5301. [9] Huang YJ, Dou Q, Wang ZX, et al. HL-FCN: Hybrid loss guided FCN for colorectal cancer segmentation [C]//Proceedings of the Biomedical Imaging (ISBI 2018). Wahington DC:2018 IEEE 15th International Symposium on, IEEE, 2018: 195-198. [10] Wang J, Lu J, Qin G, et al. Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images [J]. Medical physics, 2018, 45(6): 2560-2564. [11] Jian J, Xiong F, Xia W, et al. Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images [J]. Australasian Physical & Engineering Sciences in Medicine, 2018, 41(2): 393-401. [12] Cheng R, Lay N, Mertan F, et al. Deep learning with orthogonal volumetric HED segmentation and 3D surface reconstruction model of prostate MRI [C]//Proceedings of the Biomedical Imaging (ISBI 2017). Wahington DC:2017 IEEE 14th International Symposium on, IEEE, 2017: 749-753. [13] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]//Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770-778.. [14] Du X, El-Khamy M, Lee J, et al. Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection [C]//Proceedings of the Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on, IEEE, 2017: 953-961 [15] Peng C, Zhang X, Yu G, et al. Large kernel matters—improve semantic segmentation by global convolutional network [C]//Proceedings of the Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, IEEE, 2017: 1743-1751. [16] Seferbekov S, Iglovikov V, Buslaev A, et al. Feature pyramid network for multi-class land segmentation [C]//Proceedings of the The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018. [17] Zhou Y, Zhu Y, Ye Q, et al. Weakly supervised instance segmentation using class peak response[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3791-3800. [18] Huang L, Xia W, Zhang B, et al. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images [J]. Computer Methods and Programs in Biomedicine, 2017, 143:67-74. [19] Xie S, Tu Z. Holistically-nested edge detection [C]//Proceedings of the Proceedings of the IEEE International Conference on Computer Vision, 2015: 1395-1403. [20] Milletari F, Navab N, Ahmadi SA. V-net: Fully convolutional neural networks for volumetric medical image segmentation [C]//Proceedings of the 3D Vision (3DV), 2016 Fourth International Conference on, IEEE, 2016: 565-571. [21] Chollet F. Keras[EB/OL]. 2015-06-27. https://keras.io. [22] Kingma DP, Ba J. Adam: a method for stochastic optimization [C] San Diego:the 3rd International Conference for Learning Representations, 2015:1-5. [23] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks [C]//Proceedings of the Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010: 249-256. [24] Taha A A, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool[J]. BMC medical imaging, 2015, 15(1): 29. [25] Cardenes R, de Luis-Garcia R, Bach-Cuadra M. A multidimensional segmentation evaluation for medical image data [J]. Computer Methods and Programs in Biomedicine, 2009, 96(2): 108-124. [26] Veropoulos K, Campbell C, Cristianini N. Controlling the sensitivity of support vector machines [C]//Proceedings of the Proceedings of the International Joint Conference on AI, 1999: 60.
|