设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
C形臂X光机的原位投影增强系统

A projection-augmented system for in situ projection for mobile C-arms

作者: 邢树伟  丁辉  王广志 
单位:清华大学医学院生物医学工程系(北京 100084)
关键词: 移动C型臂X光机;  投影增强;  原位投影;  光路重合;  校正 
分类号:R318.6
出版年·卷·期(页码):2019·38·6(551-559)
摘要:

目的 移动C型臂X光机是微创骨科手术中必不可少的成像设备。针对当前微创骨科手术需要反复透视和操作直观性差的问题,本文提出一个针对移动C型臂X光机的原位投影增强系统。方法 首先设计了一种双重反射的投影增强模块;然后基于上述模块,提出一种基于动态追踪的系统标定方法,以实现投影光路与X射线光路重合;接下来利用图像的单应性变换关系,分别对投影模块与X射线成像模型间的几何模型偏差和系统残留偏差进行校正,进而优化系统投影精度;最后构建原型系统,测试了系统性能并设计腰椎体膜和猪腿胫骨实验进行验证。结果 在精度验证模体距影像探测器不同高度下,系统投影误差为;固定验证模体,在移动C型臂X光机不同摆放角度下,系统投影误差为。腰椎体膜和猪腿胫骨模体实验表明,可直接在患者体表观察到患者骨骼等结构的投影信息。结论 本文提出的移动C型臂X光机投影增强系统,能够原位投射患者透视影像,直观地辅助医生术中操作,减少了术中反复透视获取手术工具和患者内部结构位置关系的次数,显示出系统未来临床应用的可行性。

Objective The mobile C-arm is an essential imaging device in minimally invasive orthopedic surgery. To reduce radiation exposure from frequently capturing X-ray images and improve unintuitive operations, we proposed a projection-augmented system for in situ projection for mobile C-arms. Methods First, we design a double projection projection-augmented module. Second, we propose a calibration method based on dynamic tracking to realize the alignment of X-ray and projection light. Third, the geometric model deviation and system residual deviation between the projection module and the X-ray imaging model are corrected by using the homography to improve projection accuracy. Finally, a prototype of the system was constructed, and performance tests and experiments of spine phantom and swine tibia were performed. Results The system overlay error is  at different heights from image intensifier to experiment phantom, and is  at different rotation angles of mobile C-arms. The experiments of spine phantom and swine tibia show that we can intuitively observe the projection information such as bone structure on the patients’ body surface. Conclusions The proposed projection-augmented system can project X-ray images onto patients in situ, and surgeons can perform intuitive operations and reduce X-ray radiation exposure. Furthermore, we verify the feasibility of our system by phantom experiments.


参考文献:

[1] Navab N, Heining SM, Traub J. Camera augmented mobile C-arm (CAMC): calibration, accuracy study, and clinical applications[J]. IEEE Transactions on Medical Imaging, 2010, 29(7): 1412-1423.

[2] Boszczyk BM, Bierschneider M, Panzer S, et al. Fluoroscopic radiation exposure of the kyphoplasty patient[J]. European Spine Journal, 2006, 15(3): 347-355.

[3] Synowitz M, Kiwit J. Surgeon’s radiation exposure during percutaneous vertebroplasty[J]. Journal of Neurosurgery: Spine, 2006, 4(2): 106-109.

[4] Bani-Kashemi A, Navab N, Mitschke M. Merging visible and invisible: two camera-augmented mobile C-arm (CAMC) applications[C]//IEEE Computer Society Second International Workshop on Augmented Reality. San Fransico, CA, USA: IEEE Presss, 1999: 134-141.

[5] Mitschke M, Bani-Hashemi A, Navab N. Interventions under video-augmented X-ray guidance: application to needle placement[C]// Medical Image Computing and Computing-Assisted Intervention (MICCAI). Pittsburgh, Pennsylvania, USA: MICCAI, 2000: 858-868.

[6] Fischer M, Fuerst B, Lee SC, et al. Preclinical usability study of multiple augmented reality concepts for K-wire placement[J]. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(6): 1007-1014.

[7] Wang X, Habert S, Berge CSZ, et al. Inverse visualization concept for RGB-D augmented C-arms[J]. Computers in Biology and Medicine, 2016, 77: 135-147.

[8] 许硕贵,何滨,沈丽萍. 无创式实时手术定位3D导航设备:中国, 201610659818.3[P]. 2019-01-04.

[9] 何滨. 附属于C臂X光机的手术定位导航设备: 中国, 201210385980.2[P]. 2014-08-13.

[10] Zeng B, Meng F, Ding H, et al. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(8): 1355-1368.

[11] Ma L, Zhao Z, Chen F, et al. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(12): 2205-2215.

[12] Gavaghan K A, Peterhans M, Oliveira-Santos T, et al. A portable image overlay projection device for computer-aided open liver surgery[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(6): 1855-1864.

[13] Ouadah S, Stayman JW, Gang G, et al. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm[J]. Proceedings of SPIE, The International Society for Optical Engineering, 2015: 94151D.

[14] Kimura M, Mochimaru M, Kanade T. Projector calibration using arbitrary planes and calibrated camera[C]// IEEE Conference on Computer Vision and Pattern Recognition.  Minneapolis, MN, USA: IEEE Press, 2007: 1-2.

[15] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.

[16] Tsai RY, Lenz RK. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3): 345-358.

[17] Park FC, Martin BJ. Robot sensor calibration: solving AX= XB on the Euclidean group[J]. IEEE Transactions on Robotics and Automation, 1994, 10(5): 717-721.

[18] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. 2nd ed. Camebridge, New York, USA: Camebridge University Press, 2003: 163-165.

[19] Shapiro R. Direct linear transformation method for three-dimensional cinematography[J]. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 1978, 49(2): 197-205.

[20] Yaniv Z, Joskowicz L. Long bone panoramas from fluoroscopic X-ray images[J]. IEEE Transactions on Medical Imaging, 2004, 23(1): 26-35.

[21] Rampersaud Y, Simon D, Foley K. Accuracy requirements for image-guided spinal pedicle screw placement[J]. Spine, 2001, 26(4): 352-359.

[1] Navab N, Heining SM, Traub J. Camera augmented mobile C-arm (CAMC): calibration, accuracy study, and clinical applications[J]. IEEE Transactions on Medical Imaging, 2010, 29(7): 1412-1423.

[2] Boszczyk BM, Bierschneider M, Panzer S, et al. Fluoroscopic radiation exposure of the kyphoplasty patient[J]. European Spine Journal, 2006, 15(3): 347-355.

[3] Synowitz M, Kiwit J. Surgeon’s radiation exposure during percutaneous vertebroplasty[J]. Journal of Neurosurgery: Spine, 2006, 4(2): 106-109.

[4] Bani-Kashemi A, Navab N, Mitschke M. Merging visible and invisible: two camera-augmented mobile C-arm (CAMC) applications[C]//IEEE Computer Society Second International Workshop on Augmented Reality. San Fransico, CA, USA: IEEE Presss, 1999: 134-141.

[5] Mitschke M, Bani-Hashemi A, Navab N. Interventions under video-augmented X-ray guidance: application to needle placement[C]// Medical Image Computing and Computing-Assisted Intervention (MICCAI). Pittsburgh, Pennsylvania, USA: MICCAI, 2000: 858-868.

[6] Fischer M, Fuerst B, Lee SC, et al. Preclinical usability study of multiple augmented reality concepts for K-wire placement[J]. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(6): 1007-1014.

[7] Wang X, Habert S, Berge CSZ, et al. Inverse visualization concept for RGB-D augmented C-arms[J]. Computers in Biology and Medicine, 2016, 77: 135-147.

[8] 许硕贵,何滨,沈丽萍. 无创式实时手术定位3D导航设备:中国, 201610659818.3[P]. 2019-01-04.

[9] 何滨. 附属于C臂X光机的手术定位导航设备: 中国, 201210385980.2[P]. 2014-08-13.

[10] Zeng B, Meng F, Ding H, et al. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(8): 1355-1368.

[11] Ma L, Zhao Z, Chen F, et al. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(12): 2205-2215.

[12] Gavaghan K A, Peterhans M, Oliveira-Santos T, et al. A portable image overlay projection device for computer-aided open liver surgery[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(6): 1855-1864.

[13] Ouadah S, Stayman JW, Gang G, et al. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm[J]. Proceedings of SPIE, The International Society for Optical Engineering, 2015: 94151D.

[14] Kimura M, Mochimaru M, Kanade T. Projector calibration using arbitrary planes and calibrated camera[C]// IEEE Conference on Computer Vision and Pattern Recognition.  Minneapolis, MN, USA: IEEE Press, 2007: 1-2.

[15] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.

[16] Tsai RY, Lenz RK. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3): 345-358.

[17] Park FC, Martin BJ. Robot sensor calibration: solving AX= XB on the Euclidean group[J]. IEEE Transactions on Robotics and Automation, 1994, 10(5): 717-721.

[18] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. 2nd ed. Camebridge, New York, USA: Camebridge University Press, 2003: 163-165.

 [19] Shapiro R. Direct linear transformation method for three-dimensional cinematography[J]. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 1978, 49(2): 197-205.

[20] Yaniv Z, Joskowicz L. Long bone panoramas from fluoroscopic X-ray images[J]. IEEE Transactions on Medical Imaging, 2004, 23(1): 26-35.

[21] Rampersaud Y, Simon D, Foley K. Accuracy requirements for image-guided spinal pedicle screw placement[J]. Spine, 2001, 26(4): 352-359.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com