设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于动态图论特征的阿尔茨海默病早期预测

Early prediction of Alzheimer disease based on dynamic graph theory

作者: 董国昭  杨柳  张逸鹤  张勇  唐晓英 
单位:北京理工大学生命学院(北京 100081); 首都医科大学宣武医院神经内科(北京100032)
关键词: 阿尔茨海默病;  主观认识下降;  静息态功能核磁共振;  动态图论;  时域变换灵活性;  空间分布广泛性 
分类号:R318.04
出版年·卷·期(页码):2019·38·6(560-567)
摘要:

目的 阿尔茨海默病是常见的神经退行性疾病,而主观认知下降可发生于阿尔茨海默病临床前期,但传统核磁共振数据分析对于主观认知下降的区分度较低。本研究通过动态图论特征在核磁共振数据中的应用,研究主观认知下降患者脑动态功能连接的变化。方法 随机纳入30例主观认知下降患者以及年龄、性别等相匹配的30例健康受试者的静息态核磁共振数据,分别计算两组受试者时域变换灵活性和空间分布广泛性两个动态图论特征,同时构建基于支持向量机的分类器,研究动态图论特征的分类效果,分析两组受试者动态图论特征的主要分类贡献脑区的变化差异。结果 研究发现主观认知下降患者在额上回、楔前叶等认知相关脑区的动态图论特征较之于正常受试者有显著减弱,且动态图论特征在分类中能够获得较高的准确度,优于传统静态图论特征。结论 动态图论特征能够分析主观认知下降患者脑动态功能连接的变化,为阿尔茨海默病的早期诊断提供理论依据。

Objective Alzheimer disease is the most common neurodegenerative disease and subjective cognitive decline (SCD) is the early stage of Alzheimer disease. However, the recognition for SCD of traditional MRI analysis is low. This paper aims to find the changes of dynamic functional connectivity in SCD patients. Methods Temporal flexibility and spatiotemporal diversity of 30 individuals with SCD and 30 matched normal controls were calculated by using the resting-state functional MRI data. Classifiers based on support vector machine were constructed to study the classification effect of dynamic graph theory parameters. The differences of main brain regions chose by dynamic graph theory parameters were analyzed. Results We found that the dynamic graph features of cognitive-related brain regions such as frontal gyrus and anterior wedge of SCD patients were significantly weaker than normal subjects, demonstrated higher classification accuracies than conventional static parameters. Conclusions Dynamic graph theory features can reveal the changes of brain dynamic function connections of SCD patients, providing a theoretical basis for the early diagnosis of Alzheimer disease.

参考文献:

[1] Patterson, C. The World Alzheimer report 2018-the state of the art of dementia research: new frontiers [R]. Alzheimer’s Disease International,2018.

[2] Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease[J]. Alzheimer's & Dementia, 2014, 10(6): 844-852.

[3] Shu N, Wang X, Bi Q, et al. Disrupted Topologic efficiency of white matter structural connectome in individuals with subjective cognitive decline [J]. Radiology, 2018, 286(1): 229-238.

[4] Li HJ, Hou XH, Liu HH, et al. Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies [J]. Human Brain Mapping, 2015, 36(3): 1217-1232.

[5] Taghia J, Cai W, Ryali S, et al. Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition [J]. Nature Communications, 2018, 9(1): 2505.

[6] Shu N, Liang Y, Li H, et al. Disrupted topological organization in white matter structural networks in amnestic mild cognitive impairment: relationship to subtype [J]. Radiology, 2012, 265(2): 518-527.

[7] Viviano RP, Hayes JM, Pruitt PJ, et al. Aberrant memory system connectivity and working memory performance in subjective cognitive decline [J]. NeuroImage, 2018, 185(1): 556-564.

[8] Zhang Y, Zhang S, Ide JS, et al. Dynamic network dysfunction in cocaine dependence: graph theoretical metrics and stop signal reaction time [J]. Neuroimage Clin, 2018, 18: 793-801.

[9] Chen T, Cai W, Ryali S, et al. Distinct global brain dynamics and spatiotemporal organization of the salience network [J]. PLoS Biology, 2016, 14(6): e1002469.

[10] Yan CG, Wang XD, Zuo XN, et al. DPABI: data processing & analysis for (resting-state) brain imaging [J]. Neuroinformatics, 2016, 14(3): 339-351.

[11] Finn ES, Shen X, Scheinost D, et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity [J]. Nature Neuroscience, 2015, 18(11): 1664-1671.

[12] Zalesky A, Fornito A, Cocchi L, et al. Time-resolved resting-state brain networks [J]. Proceedings of the National Academy of Sciences, 2014, 111(28): 10341-10346.

[13] Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations [J]. NeuroImage, 2010, 52(3): 1059-1069.

[14] Mucha PJ, Richardson T, Macon K, et al. Community structure in time-dependent, multiscale, and multiplex networks [J]. Science, 2010, 328(5980): 876-878.

[15] Fornito A, Harrison BJ, Zalesky A, et al. Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31): 12788-12793.

[16] Wang J, Wang X, Xia M, et al. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics [J]. Frontiers in Human Neuroscience, 2015, 9(1): 386.

[17] Chang CC, Lin CJ. Libsvm: a library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27.

[18] Bassett DS, Wymbs NF, Porter MA, et al. Dynamic reconfiguration of human brain networks during learning [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(18): 7641-7646.

[19] Bassett DS, Yang M, Wymbs NF, et al. Learning-induced autonomy of sensorimotor systems [J]. Nature Neuroscience, 2015, 18(5): 744-751.

[20] Mattar MG, Cole MW, Thompson-Schill SL, et al. A functional cartography of cognitive systems [J]. PLoS Computational Biology, 2015, 11(12): e1004533.

[21] Braun U, Schafer A, Walter H, et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11678-11683.

[22] Sang L, Qin W, Liu Y, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures [J]. NeuroImage, 2012, 61(4): 1213-1225

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com