设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
球囊翼片数目对装配后球囊支架系统性能的影响

Effect of balloon wing number on the performance of the assembled balloon expandable stent

作者: 艾泽琪    谷雪莲    肖善社    姜洪焱 
单位:上海理工大学医疗器械与食品学院(上海 200093); 上海微创医疗器械(集团)有限公司(上海 201203)
关键词: Pebax球囊;  冠脉支架;  球囊折叠数目;  有限元法 
分类号:R318.04
出版年·卷·期(页码):2019·38·6(590-597)
摘要:

目的 分析球囊翼片数目对装配后球囊支架系统性能的影响,为球囊支架装配工艺以及球囊支架的后续设计结构优化提供理论支持。方法 首先对Pebax球囊材料样本进行拉伸试验,得到轴向与周向应力应变曲线。然后采用抗拉性能弱的球囊周向应力应变曲线,构建基于Yeoh模型的球囊材料本构方程。之后使用SolidWorks软件建立二翼、三翼、五翼球囊以及支架模型,利用ABAQUS软件对球囊支架进行吹塑以及压握模拟,以球囊表面应力、支架最终直径作为球囊支架系统性能评价参数。最后利用水压爆破仪和游标卡尺来检测装配后球囊支架系统的爆破压和直径,验证有限元模拟的准确性。并根据有限元的分析结果优选出三翼和五翼球囊支架进行抗脱载力实验对比分析。结果 仿真中球囊表面应力集中在球囊褶皱位置,其中二翼球囊表面应力最大。二翼、三翼、五翼球囊支架系统的最终直径基本相同。实验结果与有限元模拟结果相一致。抗脱载力实验中五翼球囊支架抗脱载力较三翼球囊支架更大。结论 球囊翼片数目对装配后球囊支架系统的性能影响显著,五翼球囊支架系统在综合性能评价上表现出优势。本研究可以指导球囊与支架装配参数的调试以及球囊支架结构的优化设计。

Objective To analyze the influence from the balloon wing numbers on the performance of the assembled balloon expandable stents, and to provide theoretical support for the balloon stent assembly process and the optimization design of the balloon expandable stent. Methods Firstly, stress-strain curves in axial and hoop directions were obtained through tensile experiments of Pebax balloon sample. Then the material constitutive equation of balloon was established in finite element based on the Yeoh model according to the stress-strain curve of the balloon with weaker tensile strength in hoop direction. Moreover, the stent and balloon models with two-wing, three-wing, five-wing were established by SolidWorks. The process of compression and expanding behavior were simulated in ABAQUS, the parameters such as balloon stress and final diameter of the stent were to evaluate the performance of different balloon expandable stent. Finally, the burst pressure of assembled balloon expandable stents was tested by hydraulic blasting apparatus and the diameters of assembled balloon expandable stents were measured by a caliper to verify the accuracy of the finite element simulation. Based on the results of both simulation and experiment, the balloon expandable stent of three-wing and five-wing were selected for comparison test of anti-dislodgement force experiment. Results The stress concentrated on the position of folded area on the balloon surface. The two-wing balloon had larger stress on balloon surface than others. The final diameters of the two-wing balloon expandable stent was similar to the others. The experimental results were consistent with simulation results. In the anti-dislodgement force test, five-wing balloon expandable stent was better than three-wing balloon expanded stent. Conclusions The balloon wing number has a significant influence on the performance of the assembled balloon expandable stent. The five-wing balloon expandable stent shows the best performance in certain tests. The study promotes the adjustment of balloon expandable stent assembly process parameters and optimization design of balloon stent structure.

参考文献:

[1]申祥, 邓永泉, 谢中敏, 等. 不同形状血管中医用支架扩张力学行为的研究进展[J]. 医用生物力学, 2017, 32(2):194-198.

Shen X, Deng YQ, Xie ZM, et al. Advances in expansion property of stent in vessels with different shapes[J]. Journal of Medical Biomechanics, 2017, 32(2):194-198.

[2]Martin D, Boyle F. Finite element analysis of balloon-expandable coronary stent deployment: Influence of angioplasty balloon configuration[J]. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29(11):1161-1175.

[3]Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of crimping and inflation process of balloon expandable coronary stent using implicit solution[J]. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33(12): e2980.

[4]傅雪磊. 球囊成型工艺与过程数值模拟研究[D]. 北京: 北京化工大学, 2017.

Fu XL. Study on numerical simulation and process of balloon molding[D]. Beijing: Beijing University of Chemical Technology, 2017.

[5]Singh V, Khare R, Chandra S, et al. Dislodgement of a sirolimus-eluting stent in the right coronary artery and its successful deployment with a small-balloon technique[J]. Journal of Indian College of Cardiology, 2014, 4(1): 44-46.

[6]Ragkousis GE, Curzen N, Bressloff NW. Computational modelling of multi-folded balloon delivery systems for coronary artery stenting: insights into patient-specific stent malapposition[J]. Annals of Biomedical Engineering, 2015, 43(8):1786-1802.

[7]王佳玲, 陈华予, 陈曦, 等. 冠脉支架膨胀过程的有限元模拟[J]. 材料导报, 2009, 23(20):70-72, 97.

WANG JL, Chen HY, Chen X, et al. Finite element simulation of coronary stent expansion process[J]. Materials Review, 2009, 23(20):70-72, 97.

[8]江旭东, 冯海全, 胡志勇, 等. 球囊扩张式冠脉支架的动静态扩张过程的变形机理研究[J]. 机械强度, 2012, 34(3): 450-454.

Jiang XD, Feng HQ, Hu ZY, et al. Research on deformation mechanism for balloon-expandable intracoronary stents in static and periodic expansion[J]. Journal of Mechanical Strength, 2012, 34(3): 450-454.

[9]毛志刚, 谭丽丽, 郑丰,等. 无镍不锈钢冠脉支架力学行为的有限元模拟[J]. 材料研究学报, 2012, 26(2):125-131.

Mao ZG, Tan LL, Zheng F, et al. Finite element analysis on mechanical behaviors of nickel-free stainless steel coronary stent[J]. Chinese Journal of Materials Research, 2012, 26(2):125-131.

[10]Beule MD. Finite element stent design[D]. Ghent: Ghent University, 2008.

[11]Ro AJ, Davé V. Properties of nylon 12 balloons after thermal and liquid carbon dioxide treatments[J]. Materials Science and Engineering: C, 2013, 33(2): 909-915.

[12]袁毅, 申开智. 双向应力场对HDPE1158分子取向结晶效果的影响[J]. 高分子材料科学与工程, 2010, 26(7): 90-92.

Yuan Y, Shen KZ. Effect of two-dimensional compound stress field on the molecule's orientation and crystallization of HDPE1158[J]. Polymer Materials Science and Engineering, 2010, 26(7): 90-92.

[13]Worth RA. Modification to weld lines in extruded thermoplastic pipe using a rotating die system[J]. Polymer Engineering and Science, 1980, 20(8): 551-554.

[14]León J, Roa GJ, Camacho F, et al. Trapping as retrieval technique to resolve a ruptured and entrapped coronary balloon catheter[J]. Catheterization and Cardiovascular Interventions, 2017, 90(5): 773-776.

[15]朱平, 董侠, 王笃金. 长碳链聚酰胺基热塑性弹性体研究进展[J]. 高分子通报, 2016 (9): 171-181.

Zhu P, Dong X, Wang DJ. Research progress of long carbon chain polyamide based thermoplastic elastomers[J]. Chinese Polymer Bulletin, 2016 (9): 171-181.

[16]章凯. 双向拉伸塑料薄膜横拉成型的数值模拟研究[D]. 南昌: 南昌大学, 2006.

Zhang K. Numerical simulation of breadthwise strething process of biaxially oriented plastic film[D]. Nanchang: Nanchang University, 2006.

[17]Erwin L, Pollock MA, Gonzalez H. Blowing of oriented PET bottles: predictions of free blown size and shape[J]. Polymer Engineering and Science, 2004, 23(15):826-829.

[18]Martin L, Straeovsky D, Laroche D, et a1. Modeling and experimental validation of the stretch blow molding of PET[C]// ANTEC 1999. New York City, NY, USA: ANTEC, 1999:14-22.

[19]Poncin P, Proft J. Stent tubing: understanding the desired attributes[C]//Medical Device Materials: Proceedings of the Materials & Processes for Medical Devices Conference. Materials Park, OH: ASM International, 2004: 253-259.

[20]于凯, 谷雪莲, 胡方遒, 等.波峰数目对Z型覆膜支架生物力学性能影响[J]. 医用生物力学, 2017, 32(2): 115-121.

Yu K, Gu XL, Hu FQ, et al. Effects of strut numbers on biomechanical properties of Z-shaped stent-grafts[J]. Journal of Medical Biomechanics, 2017, 32(2): 115-121.

[21]Martin D, Boyle F. Finite element analysis of balloon-expandable coronary stent deployment: Influence of angioplasty balloon configuration[J]. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29(11): 1161-1175.

[22]Takeuchi M, Yoshitani H, Miyazaki C, et al. Relationship between the number of coronary risk factors and coronary atherosclerosis assessed by high-frequency transthoracic echocardiography[J]. Journal of the American Society of Echocardiography, 2006, 19(8): 1056-1062.

[23]毛志刚. AZ31镁合金冠脉支架力学行为的有限元模拟[D]. 南京: 南京理工大学, 2012.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com