设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
角膜胶原交联后应力重分布的有限元研究

Finite element analysis of stress redistribution after corneal collagen cross-linking

作者: 于梦瑶  秦晓张海霞  李林 
单位:首都医科大学生物医学工程学院; 首都医科大学临床生物力学应用基础研究北京市重点实验室(北京100069)
关键词: 角膜胶原交联;  应力分布;  有限元方法 
分类号:R318.01
出版年·卷·期(页码):2019·38·6(598-604)
摘要:

目的 利用有限元的方法,探索角膜胶原交联手术后基质层中应力再分布的规律。方法 通过提取正常兔眼角膜OCT图像的轮廓,建立轴对称的分区分层几何模型,赋予几何模型不同分布规律的弹性模量,探究交联后局部力学性质改变对于应力在角膜中再分布规律的影响。结果 交联导致的力学性质的改变对于角膜基质层中应力的分布有显著影响,交联模型中央交联区域及交界区域前基质层的应力显著上升,比非交联模型提高20%~40%,后基质层的应力明显下降,比非交联模型降低10%~15%。结论 交联术后角膜中央区域力学性质增强会改变基质层内应力分布的规律,使得原有的应力沿角膜深度方向和沿角膜中央向边缘方向近似线性递增的规律消失,应力在深度方向的分布更加均匀。

Objective To explore the stress redistribution in corneal stroma after collagen cross-linking surgery by finite element method. Methods By extracting the contour of normal rabbit corneal OCT images, an axisymmetric hierarchical geometric model was established, and the elastic modulus of the geometric model with different distribution laws was given to explore the effect of local mechanical properties on the redistribution of stress in cornea after crosslinking. Results The stress distribution in corneal stroma was significantly affected by the change of mechanical properties caused by cross-linking. The stress in the central cross-linking area and the anterior stroma in the junction area of the cross-linking model increased by 20%-40% compared with the non-cross-linking model, and the stress in the posterior stroma decreased by 10%-15% compared with the non-cross-linking model. Conclusions After cross-linking, the enhancement of mechanical properties in the central corneal region may change the distribution of stress in the stroma and make the distribution of stress more uniform in the depth direction. The law that the stress increases linearly along the depth and from the center to the edge disappears.

参考文献:

[1] Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion[J]. Current Eye Research, 2004, 29(1):35-40.

[2] Kling S, Ginis H, Marcos S. Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking[J]. Investigative Ophthalmology & Visual Science, 2012, 53(8): 5010-5015.

[3] 田磊. 在体角膜生物力学测量方法的建立与临床应用及京尼平兔角膜交联的初步研究[D]. 北京:中国人民解放军医学院, 2014.

Tian L. Establishment and clinical application of in vivo corneal biomechanical measurement methods and preliminary study of genipin cross-linking on rabbit cornea[D]. Beijing: The General Hospital of the People's Liberation Army, 2014.

[4] Zhang X, Yin Y, Guo Y, et al. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties[J]. Ultrasound in Medicine & Biology, 2015, 41(5):1461-1472.

[5] Dias J, Diakonis VF, Lorenzo M, et al. Corneal stromal elasticity and viscoelasticity assessed by atomic force microscopy after different cross linking protocols[J]. Experimental Eye Research, 2015, 138:1-5.

[6] Singh M, Li J, Han Z, et al. Evaluating the effects of riboflavin/UV-A and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography[J]. Investigative Ophthalmology & Visual Science, 2016, 57(9):OCT112-OCT120.

[7] Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin–ultraviolet-A-induced cross-linking[J]. Journal of Cataract and Refractive Surgery, 2003, 29(9):1780-1785.

[8] Wollensak G, Iomdina E. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking[J]. Acta Ophthalmologica Scandinavica, 2009, 87(1):48-51.

[9] 张鹏鹏. 基于超声开放系统的角膜粘弹性定量测量与成像研究[D]. 深圳:深圳大学, 2017.

[10] 兰伟伟, 李晓娜, 陈维毅, 等. 机械牵拉与前列腺素E2联合作用下调圆锥角膜成纤维细胞赖氨酰氧化酶家族基因表达[J]. 生物医学工程学杂志, 2017,34(2): 239-245.

Lan WW, Li XN, Chen WY, et al. Gene expression of down-regulation of lysyl oxidases family in keratoconus corneal fibroblasts induced by combination of mechanical stretching and prostaglandin E2[J]. Journal of Biomedical Engineering, 2017, 34(2): 239-245.

[11] 姚艳, 冯鹏飞, 李晓娜, 等. 周期性牵拉与TNF-α对角膜成纤维细胞增殖的影响[J]. 太原理工大学学报, 2016, 47(1): 108-112.

Yao Y, Feng PF, Li XN, et al. Effects of cyclic stretch and TNF-α on cell proliferation of corneal fibroblasts[J]. Journal of Taiyuan University of Technology, 2016, 47(1): 108-112.

[12] Liu C, Feng P, Li X, et al. Expression of MMP-2, MT1-MMP, and TIMP-2 by cultured rabbit corneal fibroblasts under mechanical stretch[J]. Experimental Biology and Medicine, 2014, 239(8): 907-912.

[13] 兰伟伟. 非酶糖基化交联水凝胶基底对角膜成纤维细胞行为影响的体外研究[D]. 太原:太原理工大学, 2017.

Lan WW. The influence of collagen hydrogel substrate cross-linked by non-enzymatic glycation on corneal fibroblasts behavior in vitro [D]. Taiyuan: Taiyuan University of Technology, 2017.

[14] Seiler T, Hafezi F. Corneal cross-linking-induced stromal demarcation line[J]. Cornea, 2006, 25(9):1057-1059.

[15] Kymionis GD, Tsoulnaras KI, Grentzelos MA, et al. Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol[J]. American Journal of Ophthalmology, 2014, 158(4):671-675.e1.

[16] Kymionis GD, Tsoulnaras KI, Liakopoulos DA, et al. Corneal stromal demarcation line determined with anterior segment optical coherence tomography following a very high intensity corneal collagen cross-linking protocol[J]. Cornea, 2015, 34(6): 664-667.

[17] Yam J CS, Chan CWN, Cheng ACK. Corneal collagen cross-linking demarcation line depth assessed by visante OCT after CXL for keratoconus and corneal ectasia[J]. Journal of Refractive Surgery, 2012, 28(7):475-481.

[18] 刘兵. 基于有限元方法的角膜屈光手术分析[D].厦门: 厦门大学, 2009.

Liu B. The analysis of cornea refractive surgery based on the finite element method[D]. Xiamen: Xiamen University, 2009.

[19] 祝雅利, 陈维毅. LASIK术后眼球受力变形的有限元模拟研究[J]. 太原理工大学学报, 2008, 39(S1): 257-260.

Zhu YL, Chen WY. The simulation study on the finite element analysis of the eyeball deformation after LASIK[J]. Journal of Taiyuan University of Technology, 2008, 39(S1): 257-260.

[20] Zhang D, Sun T, Zhang H, et al. The simulation study on the deformation of rabbit cornea after refractive surgery with different cutting thickness[J]. Journal of Mechanics in Medicine and Biology, 2017, 17(8): 1750118.

[21] Kling S, Remón L, Pérez-Escudero A, et al. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments[J]. Investigative Ophthalmology & Visual Science, 2014, 51(8): 3961-3968.

[22] 田磊, 韩为, 秦晓, 等.基于超声压痕技术的兔角膜生物力学特性[J].北京生物医学工程, 2019, 38(2): 159-165.

Tian L, Han W, Qin X, et al. Biomechanical properties of rabbit cornea based on ultrasonic indentation[J]. Beijing Biomedical Engineering, 2019, 38(2): 159-165.

[23] Wang X, Li X, Chen W, et al. Effects of ablation depth and repair time on the corneal elastic modulus after laser in situ keratomileusis[J]. BioMedical Engineering OnLine, 2017, 16: 20.

[24] 谢毅, 樊瑜波, 邓应平,等. 兔眼准分子激光原位角膜磨镶术后角膜扩张的研究[J]. 生物医学工程研究, 2008, 27(1):19-22,30.

Xie Y, Fan YB, Deng YP, et al. The research of post -LASIK keratectasia in rabbits′eyes after LASIK surgery[J]. Journal of Biomedical Engineering Research, 2008, 27(1):19-22, 30.

[25] 孙太凤, 王慧枝, 穆晶,等. 基于整体角膜膨胀实验对兔眼角膜参数的确定[J]. 北京生物医学工程, 2016, 35(2):191-197.

Sun TF, Wang HZ, Mu J, et al. Determining the biomechanical properties of rabbit cornea with inflation tests[J]. Beijing Biomedical Engineering, 2016, 35(2): 191-197.

[26] 李智冬, 包芳军, 王勤美,等. 基于角膜生物力学性能的散光性角膜切开术有限元分析[J]. 中华眼科杂志, 2016, 52(9): 674-680.

Li ZD, Bao FJ, Wang QM, et al. Finite element analysis of astigmatic keratotomy based on corneal biomechanical properties[J]. Chinese Journal of Ophthalmology, 2016, 52(9): 674-680.

[27] Du GL, Chen WY, Li XN, et al. Induction of MMP-1 and -3 by cyclical mechanical stretch is mediated by IL-6 in cultured fibroblasts of keratoconus[J]. Molecular Medicine Reports, 2017, 15(6):3885-3892.

[28] Sinha Roy A, Dupps WJ, Roberts CJ. Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: finite-element analysis[J]. Journal of Cataract and Refractive Surgery, 2014, 40(6):971-980.

[29] Whitford C, Movchan NV, Studer H, et al. A viscoelastic anisotropic hyperelastic constitutive model of the human cornea[J]. Biomechanics and Modeling in Mechanobiology, 2018, 17(1): 19-29.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com