设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
Chirp编码激励磁声成像信号处理方法研究

Research on signal processing method of Chirp coded excitation for magneto-acoustic imaging

作者: 张顺起  张鑫山马任殷涛刘志朋 
单位:中国医学科学院生物医学工程研究所(天津300192)
关键词: 磁声成像;  Chirp信号;  编码激励;  脉冲压缩;  信噪比 
分类号:R318.04
出版年·卷·期(页码):2019·38·6(611-616)
摘要:

目的 磁声信号信噪比低限制了磁声成像的图像质量,本研究提出Chirp脉冲编码激励的磁声成像信号处理方法,以提高磁声信号信噪比,缩短信号处理时间。方法 本研究通过仿真计算和磁声信号的实验测量,对不同脉冲宽度的Chirp信号编码激励的磁声信号进行了研究。结果 对于体外实验猪肉与金属丝模型,编码激励明显提高磁声信号信噪比,10 μs、50 μs、100 μs的Chirp激励,磁声信号信噪比相比于单脉冲激励分别提高7.65倍、42倍和90.1倍。同时处理时间明显缩短,100 μs的Chirp激励下处理时间相比于单脉冲平均方法处理时间缩短为原来的1.2 %。结论 本研究的脉冲编码处理方法对于提高磁声信号信噪比,改善成像质量,提高整体成像效率,具有重要意义。

Objective The low signal-to-noise ratio (SNR) of magneto-acoustic signals limits the image quality of magneto-acoustic imaging. A Chirp coded excitation signal processing method for magneto-acoustic imaging is proposed in this paper. The SNR of magneto-acoustic signal is improved and the signal processing time is shortened by using this approach. Methods In this paper, Chirp coded excitation for magneto-acoustic signals under different pulse widths are studied by simulation and experimental measurement. Results The SNRs of magneto-acoustic signals are increased by 7.65 times, 42 times, and 90.1 times under 10μs, 50μs and 100μs Chirp excitation respectively, for the pork and wire sample. At the same time, the processing time is significantly shortened to 1.2% of the average method under the single pulse excitation. Conclusions The pulse coding method is of great significance to improve the SNR of magneto-acoustic signals, image quality and imaging efficiency.

参考文献:

[1] Wen H, Shah J, Balaban RS. Hall effect imaging [J]. IEEE Transactions on Biomedical Engineering 1998, 45(1): 119-124.

[2] Roth B. The role of magnetic forces in biology and medicine[J]. Experimental Biology and Medicine, 2011, 236(2): 132-137. 

[3] Emerson JF, Chang DB, McNaughton S, et al. Electromagnetic acoustic imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2013, 60(2): 364-372.

[4] 孙晓冬, 周雨琦, 马青玉. 磁感应磁声电导率图像重建研究[J]. 声学技术, 2013, 32(S1): 147-148.

[5] 周廉, 朱善安, 贺斌. 三维磁感应磁声成像的新算法研究[J]. 电子学报, 2013, 41(2): 288-294.

Zhou L, Zhu SA, He B. A three-dimensional bioimpedance imaging algorithm by means of magnetoacoustic tomography with magnetic induction[J]. Acta Electronica Sinica, 2013, 41(2): 288-294.

[6] 张伟, 马任, 张顺起, 等. 基于声学不均匀特性的磁感应磁声成像声压解析[J]. 北京生物医学工程, 2014, 33 (6): 558-564.

Zhang W, Ma R, Zhang SQ, et al. An analytical method of acoustic pressure for magnetoacoustic tomography with magnetic induction based on acoustic inhomogeneity[J]. Beijing Biomedical Engineering, 2014, 33 (6): 558-564.

[7] Towe BC, Islam MR. A magneto-acoustic method for the noninvasive measurement of bioelectric currents [J]. IEEE Transactions on Biomedical Engineering, 1988, 35(10): 892-894.

[8] Roth BJ, Basser PJ, Wikswo JP Jr. A theoretical model for MA imaging of bioelectric currents[J]. IEEE Transactions on Biomedical Engineering, 1994, 41(8): 723-728.

[9] 李翔, 刘军, 楼正国, 等. 基于磁声电相互耦合检测生物组织的电特性[J]. 仪器仪表学报, 2006, 27(s2): 1029-1030.

Li X, Liu J, Lou ZJ, et al. Detection of electric property of bio-tissue based on coupling of magnetics, acoustics and electrics[J]. Chinese Journal of Scientific Instrument, 2006, 27(Z2): 1029-1030.

[10] Mariappan L, Hu G, He B. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet[J]. Medical Physics, 2014, 41(2): 022902.

[11] 张顺起,殷涛,刘志朋. 编码激励磁声信号处理方法研究[J].生物医学工程学杂志, 2017, 34(5): 653-659.

Zhang SQ, Yin T, Liu ZP. Research on coded excitation processing method for magneto-acoustic signal[J]. Journal of Biomedical Engineering, 2017, 34(5): 653-659.

[12] 张顺起,马任,王贺,等. M序列编码激励磁声信号处理方法研究[J]. 医疗卫生装备,2018,39(1): 52-57.

Zhang SQ, Ma R, Wang H, et al. Research on M-sequence coded excitation method for magnetoacoustic imaging[J]. Chinese Medical Equipment Journal, 2018, 39(1): 52-57.

[13] Zhang S, Ma R, Yin T, Liu Z. Research on the time-frequency characteristics of the MA signal in media of different thicknesses based on the wave summing method[J]. Journal of Medical Imaging and Health Informatics, 2017, 7(2): 453-459.

[14] Sun Z, Liu G, Xia H. Lorentz force electrical impedance detection using step frequency technique[J]. Chinese Physics Letters, 2018, 35(1): 54-58.

[15] 周浩, 王友钊, 郑音飞. 医学超声编码激励技术研究进展[J]. 浙江大学学报(工学版), 2011, 45(2): 387-391.

Zhou H, Wang YZ, Zheng YF. The advance of medical ultrasonic coded excitation[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(2): 387-391.

[16] 吴振兴, 阮怀林, 何宇. 基于谱特征的雷达信号脉内编码调制样式识别[J]. 电子信息对抗技术, 2015, 30(2): 16-20, 66.

Wu ZX, Ruan HL, He Y. Intra-pulse coding modulated recognition technology of radar signals based on spectrum characteristics[J]. Electronic Warfare Technology, 2015, 30(2): 16-20, 66.

[17] Xu Y, He B. Magnetoacoustic tomography with magnetic induction (MAT-MI) [J]. Physics in Medicine & Biology, 2005, 50(21): 5175-5187.

[18] Applebaum L, Howard SD, Searle S, et al. Chirp sensing codes: deterministic compressed sensing measurements for fast recovery[J]. Applied and Computational Harmonic Analysis, 2009, 26(2): 283-290.

[19] 郑阳, 何存富, 吴斌. Chirp信号及其在超声导波检测中的应用[J]. 仪器仪表学报, 2013, 34(3): 552-558.

Zheng Y, He CF, Wu B. Chirp signal and its application in ultrasonic guided wave inspection[J]. Chinese Journal of Scientific Instrument, 2013, 34(3): 552-558.

[20] Wang C, Wang Z. M-sequence coded excitation ultrasound detecting technology[J]. Journal of Henan Normal University (Natural Science Edition), 2011, 39(3): 51-54.

Hinich MJ. A model for a self-adapting filter[J]. Information and Control, 1962, 5(3): 185-203. 

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com