设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
血液泵液体润滑螺旋槽止推轴承承载及溶血性能研究

Bearingand hemolytic performancesof hydrodynamic spiral groove thrust bearing for blood pump

作者: 尹红磊  肖艳萍杜建军 
单位:哈尔滨工业大学(深圳)机电工程与自动化学院(广东深圳 518055)
关键词: 人工心脏;  液力轴承;  螺旋槽轴承;  血液相容性 
分类号:R318.04
出版年·卷·期(页码):2019·38·6(623-633)
摘要:

目的 针对血液泵用的血液润滑止推轴承的平面线型,提出了一种双圆弧线平面线型,以提高止推轴承的承载性能和血液泵血液相容性。方法 基于N-S方程和k-ε标准方程湍流模型,采用Fluent软件数值计算的方式,将这种线型的轴承与传统的对数螺旋线型以及斜直线型轴承进行了承载力、刚度、壁面切应力、质量流量和溶血指标的对比,对双圆弧线型螺旋槽止推轴承的槽数、槽深、槽长比等参数进行了优化以提高轴承支承力。结果 双圆弧线型的螺旋槽止推轴承具有良好的承载能力,且质量流量较大,壁面剪切应力小,在血液相容性方面比其他两种轴承更有优势。优化后的双圆弧线型螺旋槽止推轴承的溶血性能均满足要求。结论 对于微米级厚度的螺旋槽止推轴承,在满足轴承性能和溶血性能的基础上,为方便加工,应优先选取双圆弧线型的螺旋槽止推轴承。

Objective In order to improve the bearing capacity of thrust bearing and the compatibility of blood pump, a new type of double arc-shaped thrust bearing which is used in the blood pump thrust is proposed. Methods Based on Navier-Stokes equation and k - epsilon standard equation turbulent model, the numerical calculation method of Fluent software was adopted to compare the bearing capacity, stiffness, wall shear stress, mass flow and hemolysis indexes of this type of linear bearing with the traditional logarithmic spiral type bearing and oblique linear type bearing, and to optimize the parameters such as groove number, groove depth and groove length ratio of double-arc spiral groove thrust bearing. Results The double circular arc spiral groove thrust bearing had good load-carrying capacity, and the characteristics of large mass flow and small wall shear stress made the bearing more advantageous in blood compatibility than the other two kinds of bearings. The hemolysis performance of the optimized double arc-shaped spiral groove thrust bearing met the requirements. Conclusions For micron thickness spiral groove thrust bearing, on the basis of meeting the requirements of bearing performance and hemolysis performance, we should give priority to double arc type spiral groove thrust bearing to facilitate processing.

参考文献:

[1]陈伟伟, 高润霖, 刘力生,等. 中国心血管病报告2016概要[J]. 中国循环杂志, 2017, 32(6): 521-530.

[2]Wampler R, Lancisi D, Indravudh V, et al. A sealless centrifugal blood pump with passive magnetic and hydrodynamic bearings[J]. Artificial Organs, 1999, 23(8):780-784.

[3]Bertram CD, Qian Y, Reizes JA. Computational fluid dynamics performances prediction for the hydrodynamic bearings of the VentrAssist rotary blood pump[J]. Artificial Organs, 2001, 25(5): 348–357.

[4]Kink T, Reul H. Concept for a new hydrodynamic blood bearing for miniature blood pumps[J]. Artificial Organs, 2004, 28(10):916-920.

[5]Chan WK, Akamatsu T, Li HD. Analytical investigation of leakage flow in disk clearance of a magnetically suspended centrifugal impeller[J]. Artificial Organs, 2010, 24(9):734-742.

[6]Muijderman EA. Analysis and design of spiral-groove bearings[J]. Tribology, 1968, 1(1): 63.

[7]Yamane T, Maruyama O, Nishida M, et al. Hemocompatibility of a hydrodynamic levitation centrifugal blood pump[J]. Journal of Artificial Organs, 2007, 10(2):71-76.

[8]Stepanoff AJ. Centrifugal and axial flow pumps[M]. New York: John Wiley & Sons, Inc., 1957.

[9]陈建中,张锡文,赵春章,等.微型轴流血泵溶血的数值模拟[J].北京生物医学工程,2007,26(2):117-119, 128.

[10]Giersiepen M, Wurzinger LJ, Opitz R, et al. Estimation of shear stress—related blood damage in heart valve prostheses in vitro comparison of 25 aortic valves[J]. The International Journal of Artificial Oragans, 1990, 13 (5):300-306.

[11]Blackshear PL Jr, Dorman FD, Steinbach JH. Some mechanical effects that influence hemolysis[J]. Transactions-American Society for Artificial Internal Organs, 1965, 11: 112-117.

[12]Garon A, Farinas MI. Fast three-dimensional numerical hemolysis approximation[J]. Artifical Organs, 2004, 28(11): 1016-1025.

[13]Gu L, Smith WA. Evaluation of computational models for hemolysis estimation[J]. ASAIO Journal, 2005, 51(3): 202-207.

[14]王芳群,曾培,茹伟民,等. 应用CFD研究叶轮设计对人工心脏泵内流场的影响[J].中国生物医学工程学报,2005,24(5):578-582.

[15]Han Q, Zou J, Ruan X, et al. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump[J]. Artificial Organs, 2012, 36(8):739-746

[16]Amaral F, Gross-Hardt S, Timms D, et al. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump[J]. Artificial Organs, 2013, 37(10): 866-874.

[17]李卫东, 姚奇, 杜建军, 等. 基于CFD的液悬浮人工心脏泵叶轮入口优化分析[J]. 北京生物医学工程, 2017,36(1): 21-28,54. 

Li WD, Yao Q, Du JJ, et al. Optimization analysis for impeller inlet of artificial heart pump with hydraulic suspension based on CFD [J]. Beijing Biomedical Engineering, 2017,36(1):21-28,54.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com