设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
干细胞在喉软骨修复中的作用及研究进展

Function andresearch progress of stem cells in laryngeal cartilage repair

作者: 徐捷  沈志森  吴益栋  崔翔  裘世杰  叶栋 
单位:宁波大学医学院(浙江宁波;315211); 宁波大学医学院附属李惠利医院耳鼻咽喉头颈外科(浙江宁波 315040)
关键词: 喉软骨;  干细胞;  软骨修复;  组织工程;  支架 
分类号:R318
出版年·卷·期(页码):2019·38·6(644-649)
摘要:

喉癌的发病率占头颈部恶性肿瘤的第二位并有上升趋势,手术后因喉组织缺损致喉呼吸、发音及吞咽等功能障碍,严重影响喉癌患者的生存率及生活质量。将组织工程支架用于喉相关疾病的治疗是较理想的方法之一,其中如何选择合适的种子细胞将其赋予支架中是非常重要的环节。干细胞作为种子细胞用于软骨修复已经证实优于分化的细胞如软骨细胞等,本文从喉软骨修复的国内外研究现状、干细胞的分类、干细胞修复软骨组织的作用机制等方面进行介绍,并分析了当前干细胞的相关研究进展对未来应用于临床的前景。

Laryngeal cancer is the second leading cause of head and neck malignant tumors and is on the rise. The survival rate and quality of life of patients are seriously affected after surgery. Tissue engineering scaffolds are one of the ideal methods for the treatment of laryngeal related diseases. It is the key point to select seed cells for tissue engineering scaffolds. Stem cells, as seed cells, have been proved to be superior to the differentiated cells such as chondrocytes in cartilage repair. In this paper, the research status of laryngeal cartilage repair at home and abroad, the classification of stem cells, and the mechanism of stem cells in cartilage tissue repair are introduced, and the related research progress of stem cells is analyzed, and the future prospects for clinical application are also discussed.

参考文献:

[1]Du L, Li H, Zhu C, et al. Incidence and mortality of laryngeal cancer in china, 2011[J]. Chinese Journal of Cancer Research, 2015, 27(1):52-58.

[2]Rifai M, Hassouna MS, Fattah A, et al. Experience with supracricoid laryngectomy variants[J]. Head & Neck, 2011, 33(8): 1177-1183.

[3]Leone CA, Capasso P, Russo G, et al. Supracricoid laryngectomies: oncological and functional results for 152 patients[J]. Acta Otorhinolaryngologica Italica, 2014, 34 (5): 317-326.

[4]To K, Qureishi A, Mortimore S, et al. The role of primary transoral laser microsurgery in laryngeal cancer: a retrospective study[J].Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery,2015,40(5):449-455.

[5]Basad E, Ishaque B, Bachmann G, et al. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study[J]. Knee Surgery, Sports Traumatology, Arthroscopy: official Journal of the Esska, 2010,18 (4) :519-527.

[6]Kang SW, Yoo SP, Kim BS, et al. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage[J]. Bio-medical Materials and Engineering, 2007,17(5):269-276.

[7]Du XF, Kwon SK, Song JJ, et al. Tracheal reconstruction by mesenchymal stem cells with small intestine submucosa in rabbits[J]. International Journal of Pediatric Otorhinolaryngology, 2012,76(3):345-351.

[8]Tsumaki N, Okada M, Yamashita A, et al. iPS cell technologies and cartilage regeneration[J]. Bone, 2015,70: 48-54.

[9]Lee JW, Fang X, Krasnodembskaya A, et al. Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors[J]. Stem Cells, 2011,29(6):913–919.

[10]Koga H, Engebretsen L, Brinchmann JE, et al. Mesenchymal stem cell-based therapy for cartilage repair: a review[J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2009,17 (11) :1289-1297.

[11]Acharya C, Adesida A, Zajac P, et al. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation[J]. Journal of Cellular Physiology, 2012, 227 (1): 88-97.

[12]Steck E, Bertram H, Abel R, et al. Induction of intervertebral disc-like cells from adult mesenchymal stem cells[J]. Stem Cells, 2005, 23(3):403-411.

[13]Yao H, Xue J, Wang Q, et al. Glucosamine-modified polyethylene glycol hydrogel-mediated chondrogenic differentiation of human mesenchymal stem cells[J]. Materials Science and Engineering: C,2017,79:661-670.

[14]An HS, Thonar EJ, Masuda K. Biological repair of intervertebral disc[J]. Spine, 2003, 28(15 Suppl):S86-S92.

[15]Dani?ovi? L, Bohá? M, Zamborsky R, et al. Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering[J]. General Physiology and Biophysics, 2016, 35 (2): 207-214.

[16]Guzzo RM, Scanlon V, Sanjay A, et al. Establishment of human cell type-specific iPS cells with enhanced chondrogenic potential[J]. Stem Cell Reviews, 2014, 10 (6): 820-829.

[17]Guzzo RM, Gibson J, Xu RH, et al. Efficient differentiation of human iPSC‐derived mesenchymal stem cells to chondroprogenitor cells[J]. Journal of Cellular Biochemistry, 2013, 114(2): 480-490.

[18]Nejadnik H, Diecke S, Lenkov OD, et al. Improved approach for chondrogenic differentiation of human induced pluripotent stem cells[J]. Stem Cell Reviews and Reports, 2015,11(2):242-253.

[19] Ko JY, Kim KI, Park S, et al. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells[J]. Biomaterials, 2014,35(11):3571-3581.

[20] Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells[J]. Nature, 448(7151): 313-317.

[21] Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome[J]. Proceedings of the Japan Academy, Series B, Physical and Biological Sciences,2009, 85(8):348-362.

[22]Leten C, Roobrouck VD, Struys T, et al. Controlling and monitoring stem cell safety in vivo in an experimental rodent model[J]. Stem Cells, 2014, 32(11):2833-2844.

[23]Kang N, Liu X, Guan Y, et al. Effects of co-culturing bmscs and auricular chondrocytes on the elastic modulus and hypertrophy of tissue engineered cartilage[J]. Biomaterials, 2012, 33(18): 4535-4544.

[24]Spees JL, Lee RH, Gregory CA, et al. Mechanisms of mesenchymal stem/stromal cell function[J]. Stem Cell Research & Therapy, 2016, 7(1): 125-138.

[25]Rani S, Ryan AE, Griffin MD, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications[J]. Molecular Therapy the Journal of the American Society of Gene Therapy, 2015, 23(5):812-823.

[26]Zhang S, Chu WC, Lai RC, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration[J]. Osteoarthritis & Cartilage, 2016, 24(12): 2135-2140.

[27]Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model[J]. Theranostics, 2017, 7(1):180-195.

[28]Arasu UT, K?rn? R, H?rk?nen K, et al. Human mesenchymalstem cells secrete hyaluronan-coated extracellular vesicle[J]. Matrix Biology, 2017, 64: 54-68.

[29]Medvedev SP , Grigor’Eva EV, Shevchenko AI, et al. Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage[J]. Stem Cells and Development, 2011, 20(6):1099-1112.

[30]Hwang NS, Varghese S, Zhang Z, et al. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine- glycine- aspartate- modified hydrogels [J]. Tissue Engineering,2006,12(9): 2695- 2706.

[31]Wakitani S, Okabe T, Horibe S, et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months[J]. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5(2): 146-150.

[32]de Windt TS, Vonk LA, Slaper-Cortenbach IA, et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons[J]. Stem Cells, 2017, 35(1): 256-264.

[33]Vinardell T, Sheehy EJ, Buckley CT, et al. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources[J].Tissue Engineering Part A,2012,18(11-12):1161-1170.

[34]Pagnotto MR, Wang Z, Karpie JC, et al. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair[J]. Gene Therapy, 2007, 14(10): 804-813.

[35]De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane[J].Arthritis and Rheumatism ,2001,44(8):1928-1942.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com