设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
血细胞损伤检测研究进展

Research progress on detection of blood celldamage

作者: 王陶涛  谷雪莲 
单位:上海理工大学医疗器械与食品学院(上海 200093)
关键词: 血液检测;  体外循环;  优化; 
分类号:R318; R552
出版年·卷·期(页码):2019·38·6(650-654)
摘要:

血细胞的损伤程度对于体外循环心脏直视手术的成功至关重要,因此血细胞损伤检测是血泵优化及术中监测必不可少的环节。目前,血细胞损伤检测技术主要分为离线检测和在线实时检测两大类。这两种检测技术各有优缺点,其中离线检测方法能准确测量数据, 而在线实时检测方法则是利用血液的介电性质和光学性质实时测量获取的人体数据。本文对血细胞损伤检测技术的研究现状进行了阐述,在分析体外循环装置引起血细胞损伤原因的基础上,介绍了血细胞损伤检测方法,并结合基于血液的介电性质和光学性质研发的检测装置,分析了血细胞损伤检测技术的适用范围及研究方向。

The degree of blood cell damage is important for the success of open heart surgery with cardiopulmonary bypass. Therefore, the detection of blood cell damage is an indispensable link for blood pump optimization and intraoperative monitoring. At present, detection technology of blood cell damage is mainly divided into two categories: off-line detection and on-line real-time detection. These two detection techniques have their own advantages and disadvantages. The off-line detection method can accurately measure the data, and the online real-time detection method utilizes the dielectric properties and optical properties of blood to measure the data of the human body in real time. In this paper, the research status of detection technology of blood cell damage is described. Based on the analysis of the reason of blood cell damage caused by cardiopulmonary bypass device, the detection method of blood cell damage is introduced. Combined with the detection device developed based on the dielectric and optical properties of blood, the application scope and research direction of detection of blood cell damage are analyzed.

参考文献:

[1] 龙村, 李欣,于坤. 现代体外循环学[M]. 北京: 人民卫生出版社, 2017.

Long C, Li X, Yu K. Contemporary       extracorporeal circulation[M].      Beijing: People's Medical Publishing House, 2017.

[2] 云忠,向闯,石芬. 血泵溶血的研究进展[J].生物医学工程研究,2011, 30(3): 194-198.

Yun Z, Xiang C, Shi F. Development of research on hemolysis of blood pump[J]. Journal of Biomedical Engineering Research, 2011, 30(3): 194-198.

[3] 宋小军, 刘志丽, 叶炜. AngioJet治疗下腔静脉亚急性血栓形成三例体会[J]. 中华血管外科杂志, 2017, 2(3): 177-179.

[4] 韩胜斌, 陈明清, 董坚. 下肢深静脉血栓形成在不同自然病程中的血流动力学观察:附203例报告[J]. 中国普通外科杂志, 2012, 21(4): 451-455.

Han SB, Chen MQ, Dong J. Hemodynamic observation of lower extremity deep venous thrombosis in different natural stages: a report of 203 cases[J]. Chinese Journal of General Surgery, 2012, 21(4): 451-455.

[5] 王芳群, 封志刚, 茹伟民, 等. 无源磁浮叶轮血泵的溶血实验及其指标的测定[J]. 江苏大学学报(自然科学版), 2002, 23(2): 63-65.

Wang FQ, Feng ZG, Ru WM, et al. The evaluation of hemolysis index of the permanent maglev impeller pump[J]. Journal of JianSu University (Natural Science Edition), 2002, 23(2): 63-65.

[6] 张吉亮, 吴昌哲, 霍小林. 血容量监测的方法及其在血液透析中的应用[J]. 北京生物医学工程, 2015, 34(1):96-101.

Zhang JL, Wu CZ, Hu XL. The methods of blood volume monitoring and its application in hemodialysis[J]. Beijing Biomedical Engineering, 2015, 34(1): 96-101.

[7] Eistrup SS, Takano T, Mseda T, et al. CFD studies of C1E3 Gyro centrifugal blood pump[J]. ASAIO Journal, 2000, 46(2): 232.

[8] Wang FQ, Li L, Feng ZG,et al. Prediction of shear stress-related hemolysis in centrifugal blood pumps by computation fluid dynamics[J]. Artificial Organs, 2005, 15(10): 951-955.

[9] 李卫东, 姚奇, 杜建军, 等. 基于CFD的液悬浮人工心脏泵叶轮入口优化分析[J]. 北京生物医学工程, 2017, 36(1): 21-28,54.

Li WD, Yao Q, Du JJ, et al. Optimization analysis for impeller inlet of artificial heart pump with hydraulic suspension based on CFD[J]. Beijing Biomedical Engineering, 2017, 36(1):21-28, 54.

[10] Fraser KH, Taskin ME, Zhang T, et al. Comparison of shear stress,residence time and lagrangian estimates of hemolysis in different ventricular assist device[J]. IFMBE Proceeding, 2010,32(5):548-551.

[11] 云忠,谭建平,徐先懂. 红细胞撞击损伤机理研究及仿真分析[J]. 生物医学工程研究, 2006, 25(1): 20-23,27.

Yun Z, Tan JP, Xu XD. Study and simulation analysis on the hurt principle of the RBC impact[J]. Journal of Biomedical Engineering Research, 2006, 25(1): 20-23,27.

[12] Shahraki ZH, Oscuii HN. Numerical investigation of three patterns of motion in an electromagnetic pulsatile VAD[J].ASAIO Journal ,2014, 60(3) :304 -310.

[13] Kameneva MV, Burgreen GW, Kono K, et al. Effects of turbulents-tresses upon mechanical hemolysis: experimental and computational analysis[J]. ASAIO Journal, 2004, 50(5): 418-423.

[14] Shu F, Parks R, Maholtz J, et al. Multimodal flow visualization and optimization of pneumatic blood pump for sorbent hemodialysis system[J]. Artificial Organs, 2009, 33(4): 334-345.

[15] Kosaka R, Yada T, Nishida M, et al. Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis[J]. Artificial Organs, 2013, 37(9): 778–785.

[16] Navitsky MA, Deutsch S, Manning KB. A thrombus susceptibility comparison of two pulsatile Penn State 50 cc left ventricular assist device designs[J]. Annals of Biomedical Engineering, 2013, 41(1): 4-16.

[17] Topper SR, Navitsky MA, Medvitz RB, et al. The use of fluid mechanics to predict regions of microscopic thrombus formation in pulsatile VADs[J]. Cardiovascular Engineering and Technology, 2014, 5(1): 54-69.

[18] Asakura Y, Sapkota A, Maruyama O, et al. Relative permittivity measurement during the thrombus formation process using the dielectric relaxation method for various hematocrit values[J]. Artificial Organs, 2015, 18(4): 346–353.

[19] 王倩, 许欢, 周广敏, 等. 生物阻抗测量技术及其临床应用研究进展[J]. 北京生物医学工程, 2014, 33(2): 185-190.

Wang Q, Xu H, Zhou GM, et al. Research progress on measurement technology and clinical application of bioimpedance[J]. Beijing Biomedical Engineering, 2014, 33(2): 185-190.

[20] 汪洪彬, 周恒艳, 张春健, 等. 基于电阻抗技术的多通道呼吸监测系统[J]. 北京生物医学工程, 2013, 32(6): 601-605.

Wang HB, Zhou HY, Zhang CJ, et al. A multiple-channel respiratory monitor system based on electrical impedance technology[J]. Beijing Biomedical Engineering, 2013, 32(6): 601-605.

[21] Sapkota A, Fuse T, Seki M, et al. Application of electrical resistance tomography for thrombus visualization in blood[J]. Flow Measurement and Instrumentation, 2015, 46(B): 334–340.

[22] Huu DN, Kikuchi D, Maruyama O, et al. Cole-Cole analysis of thrombus formation in an extracorporeal bloodflow circulation using electrical measurement[J]. Flow Measurement and Instrumentation, 2017, 53(A): 172-179.

[23] Oshima S, Sankai Y. Improvement of the accuracy in the optical hematocrit measurement by optimizing mean optical path length[J]. Artificial Organs, 2009, 33(9):749–756.

[24] Sakota D, Murashige T, Kosaka R, et al. Feasibility of the optical imaging of thrombus formation in a rotary blood pump by near-infrared light[J]. Artificial Organs, 2014, 38(9): 733–740.

[25] Park S, Sanders D, Smith B, et al. Total artificial heart in the pediatric patient with biventricular heart failure[J]. Perfusion, 2014, 29(1): 82-88.

[26] Fujiwara T, Sakota D, Ohuchi K, et al. Optical dynamic analysis of thrombus inside a centrifugal blood pump during extracorporeal mechanical circulatory support in a porcine model[J]. Artificial Organs, 2017, 41(10): 893–903.

[27] Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(8): 1264-1267.

[28] 周竹, 方益明, 尹建新, 等. 高光谱成像技术及其在木材无损检测中的研究进展[J]. 浙江农林大学学报,2015,32( 3) : 458 -466.

Zhou Z, Fang YM, Yin JX, et al. Review of nondestructive detection of wood and wood products based on hyperspectral imaging technology[J]. Journal of Zhejiang A&F University, 2015,32( 3) : 458-466.

[29] Burud I,Gobakken LR, Fl A, et al.Hyperspectral imaging of blue stain fungi on coated and uncoated wooden surfaces[J].International Biodeterioration & Biodegradation,  2014, 88 : 37-43.

[30] Sakota D, Murashige T, Kosaka R, et al. Real-time observation of thrombus growth process in an impeller of a hydrodynamically levitated centrifugal blood pump by near-infrared hyperspectral imaging[J]. Artificial Organs, 2015, 39(8): 714–719.

Sakota D, Fujiwara T, Ouchi K, et al. Development of an optical detector of thrombus formation on the pivot bearing of a rotary blood pump[J]. Artificial Organs, 2016, 40(9): 834–841.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com