设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
体外仿生三维血管生成微流控芯片的构建

Construction of a biomimetic 3D angiogenesis microfluidic chip

作者: 司清蕊  陈卫星  刘冉 
单位:清华大学医学院生物医学工程系(北京 100084)
关键词: 体外仿生;  三维血管;  微流控芯片;  双管道芯片;  物质扩散;  血管出芽 
分类号:R318.04
出版年·卷·期(页码):2020·39·1(1-7)
摘要:

目的 在微流控芯片上构建模拟人体血管的三维血管管道,并实现管道间的物质交换,形成有自主出芽功能的血管,为血管生成相关的疾病机制研究、药物筛选等提供良好的平台工具。方法  利用微流控技术,使用人体脐静脉内皮细胞(human umbilical vein endothelial cells ,HUVEC),采用被动进样方式,使内皮细胞在微流控芯片上自主贴壁生长形成三维血管管腔,构建体外仿生三维单管道血管和双管道血管芯片。在此基础上,开展对血管响应刺激因子出芽的功能的验证实验。 结果 体外仿生的双管道芯片的构建成功率达80%以上。在血管管道,内皮细胞无需借助外力支撑,在芯片上自主形成了直径在300μm±50 μm的宽度均匀的、类似体内血管的三维血管管腔;物质通过模拟体内的扩散过程达到血管管道,使血管管腔响应物质刺激而出现功能性的血管出芽。结论 体外仿生三维血管微流控芯片在体外实现了体内血管的结构与功能,模拟了体内物质扩散对血管生成的影响,可以用于生理过程中血管生成的体外动态观察。

Objective To construct three dimensional (3D) vascular lumens on a chip to stimulate the form and functions of blood vessels in vivo and to provide a good platform for the mechanism study, drug screening and dynamic observation of angiogenesis-related processes in vitro. Methods The single-channel and double-channel biomimetic 3D angiogenesis microfluidic chip was constructed by passive pumping method. Human umbilical vein endothelial cells (HUVEC) was seeded in vascular channel and rotated to form a 3D lumen. Then, irritant factor of angiogenesis stimulated the vascular lumen to observe angiogenesis function. Results The success rate of the chip construction was up to 80%. In the vascular channel, HUVEC grew on the wall of the channel to form a 3D vascular lumen autonomously. The diameter of the lumen was 300 μm ± 50 μm. Stimulating factors in the sample channel could reach the vascular channel through a diffusion process, similar to the diffusion process in vivo. And vascular lumen could respond the stimulating factors to form vascular sprouting. Conclusions The 3D angiogenesis microfluidic chip displays the structure and function of blood vessels and simulates the effect of substance diffusion on angiogenesis in vivo, which can be used for dynamic observation of angiogenesis in physiological processes in vitro.

参考文献:

[1] Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases[J]. Nature, 2000,407(6801):249-257.

[2] Srigunapalan S, Lam C, Wheeler AR, et al. A microfluidic membrane device to mimic critical components of the vascular microenvironment[J]. Biomicrofluidics, 2011,5(1):13409.

[3] Vickerman V, Blundo J, Chung S, et al. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging[J]. Lab on a Chip, 2008,8(9):1468-1477.

[4] Ghajar CM, Chen X, Harris JW, et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis[J]. Biophys J, 2008,94(5):1930-1941.

[5] Hyunjae L, Woohyun P. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasationa[J]. Biomicrofluidics, 2014,8(054102):1-12.

[6] Chrobak KM, Potter DR, Tien J. Formation of perfused, functional microvascular tubes in vitro[J]. Microvascular Research, 2006,71(3):185-196.

[7] Portillo L R, Annabi N. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment[J]. Lab on a Chip, 2016,16(21):4063-4081.

[8] Nashimoto Y, Hayashi T, Kunita I, et al. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device[J]. Integrative Biology :Quantitative Biosciences from Nano to Macro, 2017,9(6):506-518.

[9] Jacob C, Albert C, Andrew JP. Mechanical strain controls endothelial patterning during angiogenic sprouting[J]. Cellular and Molecular Bioengineering ,2012,5(4):463–473.

[10] Nelson CM, Vanduijn MM, Inman JL, et al. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures[J]. Science, 2006,314(5797):298-300.

[11]  Bischel LL, Lee SH, Beebe DJ. A practical method for patterning lumens through ECM hydrogels via viscous fingering patterning[J]. Journal of  Laboratory Automation ,2012,17:96-103.

[12] Jonathan WS, Despina B, Lance LM. Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis[J]. Integrative Biology :Quantitative Biosciences from Nano to Macro, 2012,4(8):857–862.

[13] Bischel LL, Young EW, Mader BR, et al. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels[J]. Biomaterials, 2013, 34: 1471-1477.

[14] Bischel LL, Beebe DJ, Sung KE. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure[J]. BMC Cancer, 2015,15(12):1-10.

[15] Walker G, Beebe DJ. A passive pumping method for microfluidic devices[J]. Lab on a Chip, 2002,2(3):131-134.

[16] Wang X, Phan DTT, George SC, et al. 3D Anastomosed microvascular network model with living capillary networks and endothelial cell-lined microfluidic channels[J]. Methods in Molecular Biology, 2017,1612:325-344.

[17] Michael P, Peter C. The link between angiogenesis and endothelial metabolism[J]. Annual Review of  Physiology, 2017,79:43-66.

[18] Blundell C, Yi YS, Ma L, et al. Placental drug transport-on-a-chip: a microengineered in vitro model of transporter-mediated drug efflux in the human placental barrier[J]. Advanced Healthcare Materials, 2018,7(2):1-17.

[19] Lee JS, Romero R, Han YM, et al. Placenta-on-a-chip: a novel platform to study the biology of the human placenta[J]. The Journal of  Maternal-Fetal & Neonatal Medicine,2016,29(7):1046-1054.

[20] Bein A, Shin W, Jalili-Firoozinezhad S, et al. Microfluidic organ-on-a-chip models of human intestine[J]. Cell Mol Gastroenterol  Hepatol, 2018,5(4):659-668.

[21] Ashammakhi N, Elkhammas E, Hasan A. Translating advances in organ-on-a-chip technology for supporting organs[J]. Journal of Biomedical Materials Research. Part B, Applied biomaterials, 2018,9999B:1-13.

[22] Jeon JS, Bersini S, Gilardi M, et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cellextravasation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(1):214-219.

[23] Wang X, Sun Q, Pei J. Microfluidic-based 3D engineered microvascular networks and their applications in vascularized microtumor models[J]. Micromachines (Basel), 2018,9(10): 493.

[24]Shirure VS, Bi Y, Curtis MB, et al. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids[J]. Lab on a Chip, 2018,18(23):3687-3702.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com