[1] Aebersold R, Mann M. Mass spectrometry-based proteomics[J]. Nature, 2003, 422(6928): 198-207. [2] de Godoy LMF, Olsen JV, Cox J, et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast[J]. Nature, 2008, 455(7217): 1251-1254. [3] Meissner F, Mann M. Quantitative shotgun proteomics: considerations for a high-quality workflow in immunology[J]. Nature Immunology, 2014, 15(2): 112-117. [4] Purvine S, Eppel* JT, Yi EC, et al. Shotgun collision‐induced dissociation of peptides using a time of flight mass analyzer[J]. Proteomics, 2003, 3(6): 847-850. [5] Houel S, Abernathy R, Renganathan K, et al. Quantifying the impact of chimera MS/MS spectra on peptide identification in large-scale proteomics studies[J]. Journal of Proteome research, 2010, 9(8): 4152-4160. [6] Wang J, Pérez-Santiago J, Katz J E, et al. Peptide identification from mixture tandem mass spectra[J]. Molecular & Cellular Proteomics, 2010, 9(7): 1476-1485.. [7] Wang J, Tucholska M, Knight JDR, et al. MSPLIT-DIA: sensitive peptide identification for data-independent acquisition[J]. Nature Methods, 2015, 12(12): 1106-1108. [8] Peckner R, Myers SA, Jacome ASV, et al. Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics[J]. Nature Methods, 2018, 15(5): 371-378. [9] Reiter L, Rinner O, Picotti P, et al. mProphet: automated data processing and statistical validation for large-scale SRM experiments[J]. Nature Methods, 2011, 8(5): 430-435. [10] Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry[J]. Nature methods, 2007, 4(3): 207-214. [11] Ting YS, Egertson JD, Payne SH, et al. Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data[J]. Molecular & Cellular Proteomics, 2015, 14(9): 2301-2307. [12] MacLean B, Tomazela DM, Shulman N, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments[J]. Bioinformatics, 2010, 26(7): 966-968. [13] R?st HL, Rosenberger G, Navarro P, et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data[J]. Nature Biotechnology, 2014, 32(3): 219-223. Bruderer R, Bernhardt O M, Gandhi T, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues[J]. Molecular & Cellular Proteomics, 2015, 14(5): 1400-1410.
|