设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于卷积神经网络和图像显著性的心脏CT图像分割

Cardiac CT image segmentation based on convolutional neural network andimage saliency

作者: 赵飞  刘杰 
单位:北京交通大学生物医学工程系(北京 100044)
关键词: 心脏CT图像;图像分割;卷积神经网络;图像显著性 
分类号:R318.04
出版年·卷·期(页码):2020·39·1(48-55)
摘要:

目的 心脏医学影像中,感兴趣部分的提取与分割是诊断心脏病变部位的关键。由于心脏舒张、收缩以及血液的流动,心脏CT图像易出现弱边界、伪影,传统分割算法易产生过度分割的情况。为此,提出一种基于卷积神经网络和图像显著性的心脏CT图像分割方法。方法 采用卷积神经网络对目标区域进行定位,滤除肋骨、肌肉等造影对比不明显部分,截取出感兴趣区域,结合感兴趣区域的对比度,计算并提高感兴趣区域的心脏组织的显著值,通过获得的显著值图像截取心脏图像,并与区域生长算法的分割结果进行对比。最后使用泰州人民医院11例患者的影像数据对算法模型进行训练和测试,其中随机选择9例用于训练,剩余2例用于测试。结果 所提算法模型在心底、心中、心尖三个心脏分段的分割正确率分别达到了92.79%、92.79%、94.11%,均优于基于区域生长的分割方法。结论 基于卷积神经网络和图像显著性的分割方法能够准确获取心脏的外围轮廓,轮廓边缘更加平滑,完全能够满足CT图像序列的心脏全自动分割任务需求,分割后的图像更加有利于医生对患者心脏健康状况和病变部位的观察。

Objective  Extraction and segmentation of interest in cardiac medical imaging is the key to diagnosis of heart disease. As the heart dilation, contraction and blood flowing, cardiac CT images prone to weakboundaries, artifacts, the traditional segmentation algorithm is easy to produce over-segmentation. To this end, this paper presents a CT image segmentation method based on image saliency. Methods This method uses a convolutional neural network to locate the target area, filter out inconspicuous parts such as ribs and muscles, extract the area of interest, combine the contrast of the area of interest, then calculate and improve the saliency value of the heart tissue in the area of interest. The heart image is intercepted from the obtained saliency value image and compared with the segmentation results of the region growing algorithm. Finally,  image data of 11 patients from Taizhou People's Hospital are used to train and test the algorithm model, of which 9 cases are randomly selected for training and the remaining 2 cases are used for testing. Results The experimental results show that the segmentation accuracy of the proposed algorithm model in the bottom, middle, apex of the heart is 92.79%, 92.79%, and 94.11%, which are better than the segmentation method based on region growth. Conclusions The segmentation method based on convolutional neural network and image saliency can accurately obtain the peripheral contour of the heart, and the contour edges are smoother, and can fully meet the needs of the automatic heart segmentation task of CT image sequences, the segmented images are more conducive for doctors to observe the patient's heart health and lesions.

参考文献:

[1] 付增良, 陈晓军, 叶铭,等. 心脏CT图像分割方法[J]. 计算机工程, 2009, 35(12):189-191.

Fu ZL, Chen XJ, Ye M, et al .Segmentation of cardiac CT images [J]. Computer Engineering, 2009, 35 (12): 189-191

[2] Karthikeyan C, Ramadoss B. Segmentation algorithm for CT images using morphological operation and artificial neural network[J]. International Journal of Computer Theory and Engineering, 2011 3(4): 561-564 .

[3] 高丽, 杨树元, 夏杰,等. 基于标记的Watershed图像分割新算法[J]. 电子学报, 2006, 34(11):2018-2023.

Ga L, Yang SY, Xia J, et al. New markers-based Watershed image segmentation algorithm [J] .Journal of Electronics, 2006, 34 (11): 2018-2023.

[4] 张建炜, 林江莉, 李德玉,等. 基于形态学重构的超声医学图像滤波方法[J]. 生物医学工程学杂志, 2007, 24(3):481-484.

Zhang JW, Lin JL, Li DY, et al. Ultrasound medical image filtering method based on morphological reconstruction [J]. Biomedical Engineering, 2007, 24 (3): 481-484.

[5]  商艳丽. 基于形态学重构运算的医学CT图像滤波方法[J]. 中国体视学与图像分析, 2011,16(1):103-107.

Shang YL.Medical CT Image Filtering Method Based on Morphological Reconstruction [J]. Chinese Journal of Stereology and Image Analysis, 2011,16 (1): 103-107

[6] Lecun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision [C]// Circuits andSystems (ISCAS), Proceedings of 2010 IEEEInternational Symposium on. USA: IEEE, 2010: 253-256. .

[7] Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6):82-97.

[8] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 79(10):1337-1342.

[9] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):2012.

[10] Comer HT, Draper BA. Interest point stability prediction[C]// International conference on computer vision systems: computer vision systems. Berlin:Springer-Verlag, 2009:315-324.

[11] Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection.[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 34(10):1915-1926.

[12] Liu T, Yuan Z, Sun J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(2):353-367.

[13] Cheng M M, Zhang G X, Mitra N J, et al. Global contrast based salient region detection[C]// Computer Vision and Pattern Recognition. Colorado Springs, Colorado:IEEE, 2015:409-416.

[14] Boureau YL, Ponce J, Lecun Y. A theoretical analysis of feature pooling in visual recognition[C]// International Conference on Machine Learning. San Diego:DBLP, 2010:111-118.

[15] Boureau YL, Ponce J, Lecun Y. A theoretical analysis of feature pooling in visual recognition[C]// Proceedings of the 27th International Conference on Machine Learning . Haifa, Israel :ICML-10,2010: 111-118.

[16] Kim KJ, Cho SB. Diverse evolutionary neural networks based on information theory[M].Berlin: Springer-Verlag, 2008:1007-1016.

[17] Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI[J]. Computer Science, 2015, 30:108–119.

[18] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.

[19] Criminisi A, Sharp T, Rother C, et al. Geodesic image and video editing[J]. Acm Transactions on Graphics, 2010, 29(5):885-900.

[20] Ma YF, Zhang HJ. Contrast-based image attention analysis by using fuzzy growing[C]// Eleventh ACM International Conference on Multimedia, Berkeley:ACM,2003:374-381.

[21] Achanta R, Estrada F, Wils P, et al. Salient region detection and segmentation[C]// International Conference on Computer Vision Systems. Berlin:Springer-Verlag, 2008:66-75.

[22] Dolson J, Baek J, Plagemann C, et al. Upsampling range data in dynamic environments[C]// IEEE Conference on Computer Vision & Pattern Recognition. Minneapolis, USA:IEEE, 2010:1141-1148.

[23] Perazzi F, Krahenbuhl P, Pritch Y, et al. Saliency filters: Contrast based filtering for salient region detection[J].  IEEE Conference on Computer Vision and Pattern Recognition ,2012, 157(10):733-740.

[24] 张石, 董建威, 佘黎煌. 医学图像分割算法的评价方法[J]. 中国图象图形学报, 2009, 14(9):1872-1880..

Zhang S, Tong JW, Shi LH.Advanced Z method for medical image segmentation algorithm [J] .Journal of Image and Graphics, 2009, 14 (9): 1872-1880.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com