[1] Song M, Zhou Y, Li J, et al. Brain spontaneous functional connectivity and intelligence[J]. Neuroimage, 2008, 41(3):1168-1176. [2] Langer N, Gianotti,LRR.,Knoch,D., et al.Functional brain network efficiency predicts intelligence[J].Human brain mapping,2012,33(6):1393-1406. [3] Wang LY , Wee CY , Suk H , et al. MRI-based intelligence quotient (IQ) estimation with sparse learning[J]. Plos One, 2015, 10(3):e0117295-. [4] Allen EA , Damaraju E , Plis SM , et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Cerebral Cortex, 2014, 24(3):663-676. [5] Liu J , Liao X , Xia M , et al. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns[J]. Human Brain Mapping, 2018, 39(2):902. [6] Tian L , Li Q , Wang C , et al. Changes in dynamic functional connections with aging[J]. NeuroImage, 2018, 172:31-39. [7] Hutchison RM , Womelsdorf T , Allen EA , et al. Dynamic functional connectivity: promise, issues, and interpretations[J]. NeuroImage, 2013, 80(1):360-378. [8] Suk HI , Wee CY , Lee SW , et al. State-space model with deep learning for functional dynamics estimation in resting-state fMRI[J]. Neuroimage, 2016, 129:292-307. [9] Consortium T A. The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience[J]. Frontiers in Systems Neuroscience, 2012, 6:62. [10] Dosenbach NU, Nardos B, Cohen A L, et al. Prediction of individual brain maturity using fMRI[J]. Science, 2010,329(5997):1358-1361 [11] Damaraju E , Allen EA , Belger A , et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia[J]. NeuroImage: Clinical, 2014,5:298-308. [12] Zalesky A, Breakspear M. Towards a statistical test for functional connectivity dynamics[J]. Neuroimage, 2015,114:466-470. [13] Yaesoubi M , Allen EA , Miller RL , et al. Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information[J]. NeuroImage, 2015, 120:133-142. [14] 赵欣, 张雄, 王伟伟, 等. 年龄相关的动态功能连接网络特征研究[J]. 生物医学工程学杂志, 2017(02):7-13. Zhao X, Zhang X, Wang WW, et al. Research on the characteristics of the dynamic functional connectivity network related to aging[J]. Beijing Biomedical Engineering, 2017(02):7-13 [15] Zou H. The adaptive lasso and its oracle properties[J]. Journal of Industrial and Management Optimization (JIMO), 2006, 101(476):1418-1429. [16] Khundrakpam BS , Tohka J , Evans AC . Prediction of brain maturity based on cortical thickness at different spatial resolutions[J]. NeuroImage, 2015, 111:350-359. [17] Bunea F , She Y , Ombao H , et al. Penalized least squares regression methods and applications to neuroimaging[J]. Neuroimage, 2011, 55(4):1519-1527. [18] Wager TD , Atlas LY , Leotti LA , et al. Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience[J]. Journal of Neuroscience, 2011, 31(2):439-452. [19] Efron B, Hastie T, Johnstone I, et al. Least angle regression[J]. Annals of Statistics, 2004, 32(2):407-451. [20] 皇甫浩然,杨剑,杨阳.基于fMRI动态功能连接的抑郁症患者分类研究[J].计算机应用研究, 2017,34(3):678-682. Huangfu HR, Yang J,Yang Y. Classifying patients with depression based on fMRI dynamic functional connectivity[J]. Application Research of Computers, 2017,34(3):678-682. [21] 蒋伟雄, 曾令李, 秦键, 等. 利用动态功能连接对健康危险性行为特征的预测[J]. 电子科技大学学报, 2018,47(6):927-931. Jiang WX, Zeng LL, Qin J, et al. Prediction of the health-risk behavior by using dynamic functional connectivity[J]. Journal of University of Electronic Science and Technology of China, 2018,47(6):927-931.
|