设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于机器学习的肝癌无创检测

Non-invasive detection of liver cancer based on machine learning

作者: 熊征斯  黄钢  郝丽俊  许飞 
单位:1上海理工大学医疗器械与食品学院(上海 200093); 2 上海健康医学院(上海 201318); 3 上海交通大学医学院(上海 200025)
关键词: 诊断;  电子鼻;  原发性肝癌;  特征提取;  机器学习 
分类号:R318.04 R735.7
出版年·卷·期(页码):2020·39·1(74-79)
摘要:

目的 根据肝癌临床诊断的需求,建立肝癌诊断预测模型,以达到无创检测肝癌的目的。 方法 利用德国企业产ILD.3000型电子鼻设备采集正常受试者和肝癌患者的呼气数据,对呼气所得时间序列数据进行特征提取,包括序列数据的最大值、最小值、均值、标准差、序列数据总和等统计学特征。结合特征降维算法和机器学习分类模型对呼气特征数据进行正常受试者和原发性肝癌患者的二分类实验。 结果 通过模型选择和参数调整,在线性核函数支持向量机上对呼气数据取得92.3%的最优二分类结果。 结论 以正常受试者和肝癌患者的呼气数据为样本,利用机器学习建模的方法可以对肝癌做出诊断预测,且在此数据上,线性核函数支持向量机算法具有最好的分类效果。

Objective  To establish a predictive model for diagnosis of liver cancer in order to achieve non-invasive detection of liver cancer.  Methods  The exhalation data of normal subjects and patients with liver cancer were collected by ILD.3000 electronic nose equipment manufactured by German enterprises. The features of exhalation time series data were extracted, including maximum, minimum, mean, standard deviation and sum of sequence data. Combining feature dimension reduction algorithm and machine learning classification model, a binary classification experiment was carried out for normal subjects and patients with primary liver cancer using expiratory feature data.  Results  Through model selection and parameter adjustment, 92.3% of the optimal binary classification results were obtained for exhalation data on linear kernel function support vector machine. Conclusion  Using the exhalation data of normal subjects and patients with liver cancer as samples, the diagnosis and prediction of liver cancer can be made by using machine learning modeling method. On this data, the linear kernel function support vector machine algorithm has the best classification effect.

参考文献:

[1] Fu J , Wang H . Precision diagnosis and treatment of liver cancer in China[J]. Cancer Letters, 2017, 412:283.

[2] 陈意飞, 夏伟, 顾晨, 等. 肝细胞癌临床诊断及其适配体应用的研究现状[J]. 中华诊断学电子杂志, 2019, 7(2):141-144. 

Chen YF, Xia W, Gu C, et al. Research of diagnosis and application of aptamer in hepatocellular carcinoma [J].  Chinese Journal of Diagnostics(Electronic Edition), 2019, 7(2): 141-144.

[3] Amann A ,Miekisch W ,Schubert J ,et al. Analysis of exhaled breath for disease detection[J]. Annual Review of Analytical Chemistry, 2014, 7(1):455-482.

[4] Rudnicka J, Kowalkowski T, Buszewski B. Searching for selected VOCs in human breath samples as potential markers of lung cancer[J]. Lung Cancer,2019,135:123-129.

[5] Saalberg Y , Wolff M . VOC breath biomarkers in lung cancer[J]. Clinica Chimica Acta, 2016, 459:5-9.

[6] Lopez-Sanchez LM, Jurado-Gamez B, Feu-Collado N, et al. Exhaled breath condensate biomarkers for the early diagnosis of lung cancer using proteomics[J]. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313(4):664-676.

[7] Oakley-Girvan I , Davis SW . Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: a systematic review[J]. Cancer Biomarkers, 2017,21(1):1-11.

[8] Kitiyakara T , Redmond S , Unwanatham N , et al. The detection of Hepatocellular carcinoma (HCC) from patients’ breath using canine scent detection: proof of concept study[J]. Journal of Breath Research, 2017, 11(4):046002.

[9] Kazmierczak PM , Theisen D , Thierfelder KM , et al. Improved detection of hypervascular liver lesions with CAIPIRINHA–dixon–TWIST–volume-interpolated breath-hold examination[J]. Investigative Radiology, 2015, 50(3):153-160.

[10] B?rwolf R, Zirnsak M , Freesmeyer M . Detection of a liver metastasis by breath-hold FDG-PET/CT not visible on standard PET/CT[J]. Japanese Journal of Clinical Oncology, 2014, 44(8):775.

[11] Rief M , Wagner M , Franiel T , et al. Detection of focal liver lesions in unenhanced

and ferucarbotran-enhanced magnetic resonance imaging: a comparison of T2-weighted breath-hold and respiratory-triggered sequences[J]. Magnetic Resonance Imaging, 2009, 27(9):1223-1229.

[12] 张方圆, 郁芸, 赵宇, 等. 人工神经网络在临床医学中的应用[J]. 北京生物医学工程, 2016, 35(4):318-324.

Fangyuan Z , Yun YU , Yu Z , et al. Application of artificial neural network in clinical medicine[J]. Beijing Biomedical Engineering, 2016,35(4):318-324.

[13] Madara T, Māris B, Strazda G , et al. Detection of lung cancer in exhaled breath with an electronic nose using support vector machine analysis[J]. Journal of Breath Research, 2017 ,11 (3): 036009.

[14] 拱健婷,邹慧琴,王佳宇,等. 基于电子鼻技术的不同产地当归快速鉴别研究[J].中国医药导报,2019,16(28):39-43.

Gong JT,Zou HQ,Wang JY,et al. Rapid identification research on Angelica sinensis from different producing areas based on electronic nose technology[J]. China Medical Herald,2019,16(28):39-43.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com