设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
超声神经刺激作用机制的研究现状

Researchstatus on the mechanism of ultrasonic neurostimulation

作者: 代林志  张淙悦  郑政 
单位:上海理工大学(上海 200093)
关键词: 超声神经刺激;  作用机制;  声辐射力;  空化 
分类号:R318.04; R445.2
出版年·卷·期(页码):2020·39·1(103-107)
摘要:

相比于传统电刺激、磁刺激,超声神经刺激具有无创、可深部聚焦、空间分辨率高等优势,在神经疾病治疗领域逐渐受到人们的重视。然而,尽管超声神经刺激近年来发展迅速,其作用机制仍尚不明确。超声的生物作用主要为热作用和机械作用,目前学术界已经一致排除了热作用在超声神经刺激中的影响,但对机械作用的具体作用过程尚未形成统一观点。本文阐述了超声神经刺激作用机制的目前研究状况,详细讨论了声辐射力假说、膜内空化理论,并提出了一种超声神经刺激作用机制的可能研究路径。

Compared with traditional electrical stimulation and magnetic stimulation, ultrasonic neurostimulation has the advantages of non-invasive, deep focusing and high spatial resolution, becoming increasingly appreciated in the field of neurological diseases treatment. However, despite the rapid development of ultrasonic neurostimulation in recent years, the mechanism of its action still remains unclear. The biological effects of ultrasound are mainly thermal and mechanical. At present, the academia has unanimously ruled out the influence of thermal action in ultrasonic neurostimulation, but a unified view has not been formed yet on the specific action process of mechanical action. This paper describes the current research status of the mechanism of ultrasonic neurostimulation, discusses in detail the two hypotheses of acoustic radiation force and cavitation in membrane, and proposes one possible research path in the mechanism of ultrasonic nerve stimulation.

参考文献:

[1] Rokyta R, Fricova J. Noninvasive neuromodulation methods in the treatment of chronicpain[M]. Germany:    IntechOpen, 2014.

[2] Rasche D,  Knotkova H. Textbook of neuromodulation[M]. Germany: Springer Verlag, 2015.

[3]  Garcia-Larrea L, Peyron R. Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms[J]. NeuroImage, 2007, 37(5): 71-79.

[4] Padberg F, et al. Repetitive transcranial magnetic stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity[J]. Neuropsychopharmacoloty, 2002, 27(4): 638-645.

[5]  Groves DA, Browm VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects[J]. Neurosci Biobehav Rev, 2005, 29(3): 493-500.

[6] Deng ZD, et al. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs[J]. Brain Stimulation, 2013, 6(1): 1-15.

[7] 周丽娜, 王世民. 脑深部电刺激术治疗帕金森病研究进展[J]. 国际神经病学神经外科学杂志, 2007, 34(2):  150-154.

 [8] 吕浩, 唐劲天. 经颅磁刺激技术的研究和进展[J]. 中国医疗器械信息, 2006, 12(5): 28-32.

 [9] 黎国锋, 邱维宝. 超声神经调控技术与科学仪器[J]. 生命科学仪器, 2017, 15(1): 3-8.

 [10] Kim H, Fischer K, Park S, et al. Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound[J]. Ultrasound in Medicine & Biology, 2012, 38(9): 1568-1575.

[11] Younan Y, Deffieux T, Larrat B, et al. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation[J]. Medical Physics, 2013, 40(8).

[12] Hameroff S, Trakas M, Duffield C, et al. Transcranial ultrasound (TUS) effects on mental states: a pilot study[J]. Brain Stimulation, 2013, 6(3): 409-415.

[13] Kubanek J. Neuromodulation with transcranial focused ultrasound[J]. Neurosurgical Focus, 2018, 38(6).

[14] Lin ZR, Zhou W, Huang XW, et al. On-chip ultrasound modulation of pyramidal neuronal activity in hippocampal slices[J]. Advanced Biosystems, 2018, 2(8 ):1800041.

[15] Naor O, Krupa S, Shoham S. Ultrasonic neuromodulation[J]. Journal of Neural Engineering, 2016, 13: 031003.

[16] Tyler WJ, Lani SW, Hwang GM, et al.Ultrasonic modulation of neural circuit activity[J]. Current Opinion in Neurobiology, 2018, 50: 222-231.

[17] 沈雪莲, 严飞, 赵云. 超声神经调控的研究进展[J]. 临床超声医学杂志, 2016, 18(11): 764-766.

    Shen XL, Yan F, Zhao Y. Research progress of neuromodulation with ultrasound[J].Journal of Ultrasound in Clinical Medicine, 2016, 18(11): 764-766.

[18] Tyler WJ, Tufail Y,Finsterwald M, et al. Remote excitation of neuronal circuits using low-intensity,low-frequency ultrasound.Plos One[J]. Plos One, 2008, 3(10): e3511.

[19] Tufail Y, Matyushov A, Baldwin N, et al. Transcranial pulsed ultrasound stimulates intact brain circuits[J]. Neuron, 2010, 66(5): 681-694.

[20] Kubanek J, Shukla P, Das A, et al. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system[J]. The Journal of Neuroscience, 2018, 38(12): 3081-3091.

[21] Nightingale KR, Church CC, Harris G, et al. Conditionally increased acoustic pressures in nonfetal diagnostic ultrasound examinations without contrast agents: a preliminary assessment[J]. Journal of Ultrasound in Medicine, 2015, 34(7): 1-41.

[22] Vykhodtseva N, Hynynen K, Damianou C,et al. Histological effects of high intensity pulsed ultrasound exposure with subharmonic emmission in rabbit brain in vivo[J].  Ultrasound in Medicine and Biology, 1995, 21: 969-979.

[23] Gateau J, Chauvet D, Fink M, et al. In vivo bubble nucleation probability in sheep brain tissue[J]. Physics in Medicine and Biology, 2011, 56: 7001-7015.

[24] Mihran RT, Barnes FS, Wachtel H. Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse[J]. Ultrasound Med.Biol, 1990, 16: 297-309.

[25] Wahab RA, Choi M. Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model[J]. Medical Physics, 2012, 39 (7): 4274-4283..

[26] Kubanek J, Chen D, Marsh J, et al. Ultrasound modulates ion channel currents[J]. Scientific Reports, 2016, 26(6): 24170.

[27] Prieto ML, Firouzi K, Maduke M, et al. Activation of Piezo1 but not NaV1.2 Channels by Ultrasound at 43 MHz[J]. Ultrasound in Medicine & Biology, 2018, 44(6) :1217-1232.

[28] Meng L. Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL[J]. Nano Letters, 2018, 18(7): 4148-4155.

[29] Menz MD, Ye P, Firouzi K, et al. Physical mechanisms of ultrasonic neurostimulation of the retina[N]. Neuroscience, 2016-12-16.

[30] Tan JCH, Kalapesi FB, Coroneo MT, et al. Mechanosensitivity and the eye: cells coping with the pressure[J].British Journal of Ophthalmology, 2006, 90(3): 383-388.

[31] Krizaj D. chapter 20, Polymodal sensory intergation in retinal ganglion cells[J]. HHS Public Access, 2016, 854: 693–698.

[32] King RL, Brown JR, Newsome WT, et al. Effective parametersfor ultrasound-induced in vivo neurostimulation[J]. Ultrasound Med Biol, 2013, 39(9): 312-331.

[33] Krasovitski B, Frenkel V, Shohama S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects [J]. Proceedings of the National Academy of Sciences, 2011, 108(8): 3258-3263.

[34] Plaksin M, Shoham S, Kimmel E, et al. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation[J]. Physical Review X, 2014, 4(1): 331-344.

[35] 胡胜男, 吴永亮, 等. 一种用于脑神经刺激的程控超声发生器[J]. 生物医学工程学报, 2017, 36(5): 589-595.

Hu SN, Wu YL. et al.The utility model relates to a program-controlled ultrasonic generator for brain nerve stimulation[J]. Journal of biomedical engineering, 2017, 36(5): 589-595.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com