[1] Rokyta R, Fricova J. Noninvasive neuromodulation methods in the treatment of chronicpain[M]. Germany: IntechOpen, 2014. [2] Rasche D, Knotkova H. Textbook of neuromodulation[M]. Germany: Springer Verlag, 2015. [3] Garcia-Larrea L, Peyron R. Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms[J]. NeuroImage, 2007, 37(5): 71-79. [4] Padberg F, et al. Repetitive transcranial magnetic stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity[J]. Neuropsychopharmacoloty, 2002, 27(4): 638-645. [5] Groves DA, Browm VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects[J]. Neurosci Biobehav Rev, 2005, 29(3): 493-500. [6] Deng ZD, et al. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs[J]. Brain Stimulation, 2013, 6(1): 1-15. [7] 周丽娜, 王世民. 脑深部电刺激术治疗帕金森病研究进展[J]. 国际神经病学神经外科学杂志, 2007, 34(2): 150-154. [8] 吕浩, 唐劲天. 经颅磁刺激技术的研究和进展[J]. 中国医疗器械信息, 2006, 12(5): 28-32. [9] 黎国锋, 邱维宝. 超声神经调控技术与科学仪器[J]. 生命科学仪器, 2017, 15(1): 3-8. [10] Kim H, Fischer K, Park S, et al. Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound[J]. Ultrasound in Medicine & Biology, 2012, 38(9): 1568-1575. [11] Younan Y, Deffieux T, Larrat B, et al. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation[J]. Medical Physics, 2013, 40(8). [12] Hameroff S, Trakas M, Duffield C, et al. Transcranial ultrasound (TUS) effects on mental states: a pilot study[J]. Brain Stimulation, 2013, 6(3): 409-415. [13] Kubanek J. Neuromodulation with transcranial focused ultrasound[J]. Neurosurgical Focus, 2018, 38(6). [14] Lin ZR, Zhou W, Huang XW, et al. On-chip ultrasound modulation of pyramidal neuronal activity in hippocampal slices[J]. Advanced Biosystems, 2018, 2(8 ):1800041. [15] Naor O, Krupa S, Shoham S. Ultrasonic neuromodulation[J]. Journal of Neural Engineering, 2016, 13: 031003. [16] Tyler WJ, Lani SW, Hwang GM, et al.Ultrasonic modulation of neural circuit activity[J]. Current Opinion in Neurobiology, 2018, 50: 222-231. [17] 沈雪莲, 严飞, 赵云. 超声神经调控的研究进展[J]. 临床超声医学杂志, 2016, 18(11): 764-766. Shen XL, Yan F, Zhao Y. Research progress of neuromodulation with ultrasound[J].Journal of Ultrasound in Clinical Medicine, 2016, 18(11): 764-766. [18] Tyler WJ, Tufail Y,Finsterwald M, et al. Remote excitation of neuronal circuits using low-intensity,low-frequency ultrasound.Plos One[J]. Plos One, 2008, 3(10): e3511. [19] Tufail Y, Matyushov A, Baldwin N, et al. Transcranial pulsed ultrasound stimulates intact brain circuits[J]. Neuron, 2010, 66(5): 681-694. [20] Kubanek J, Shukla P, Das A, et al. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system[J]. The Journal of Neuroscience, 2018, 38(12): 3081-3091. [21] Nightingale KR, Church CC, Harris G, et al. Conditionally increased acoustic pressures in nonfetal diagnostic ultrasound examinations without contrast agents: a preliminary assessment[J]. Journal of Ultrasound in Medicine, 2015, 34(7): 1-41. [22] Vykhodtseva N, Hynynen K, Damianou C,et al. Histological effects of high intensity pulsed ultrasound exposure with subharmonic emmission in rabbit brain in vivo[J]. Ultrasound in Medicine and Biology, 1995, 21: 969-979. [23] Gateau J, Chauvet D, Fink M, et al. In vivo bubble nucleation probability in sheep brain tissue[J]. Physics in Medicine and Biology, 2011, 56: 7001-7015. [24] Mihran RT, Barnes FS, Wachtel H. Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse[J]. Ultrasound Med.Biol, 1990, 16: 297-309. [25] Wahab RA, Choi M. Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model[J]. Medical Physics, 2012, 39 (7): 4274-4283.. [26] Kubanek J, Chen D, Marsh J, et al. Ultrasound modulates ion channel currents[J]. Scientific Reports, 2016, 26(6): 24170. [27] Prieto ML, Firouzi K, Maduke M, et al. Activation of Piezo1 but not NaV1.2 Channels by Ultrasound at 43 MHz[J]. Ultrasound in Medicine & Biology, 2018, 44(6) :1217-1232. [28] Meng L. Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL[J]. Nano Letters, 2018, 18(7): 4148-4155. [29] Menz MD, Ye P, Firouzi K, et al. Physical mechanisms of ultrasonic neurostimulation of the retina[N]. Neuroscience, 2016-12-16. [30] Tan JCH, Kalapesi FB, Coroneo MT, et al. Mechanosensitivity and the eye: cells coping with the pressure[J].British Journal of Ophthalmology, 2006, 90(3): 383-388. [31] Krizaj D. chapter 20, Polymodal sensory intergation in retinal ganglion cells[J]. HHS Public Access, 2016, 854: 693–698. [32] King RL, Brown JR, Newsome WT, et al. Effective parametersfor ultrasound-induced in vivo neurostimulation[J]. Ultrasound Med Biol, 2013, 39(9): 312-331. [33] Krasovitski B, Frenkel V, Shohama S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects [J]. Proceedings of the National Academy of Sciences, 2011, 108(8): 3258-3263. [34] Plaksin M, Shoham S, Kimmel E, et al. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation[J]. Physical Review X, 2014, 4(1): 331-344. [35] 胡胜男, 吴永亮, 等. 一种用于脑神经刺激的程控超声发生器[J]. 生物医学工程学报, 2017, 36(5): 589-595. Hu SN, Wu YL. et al.The utility model relates to a program-controlled ultrasonic generator for brain nerve stimulation[J]. Journal of biomedical engineering, 2017, 36(5): 589-595.
|