设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于显微磁共振成像和有限元分析的股骨近端微观力学行为研究

Study on micromechanical behavior of the proximal femur based on micro-magnetic resonance imaging and finite element analysis

作者: 张凌云  王玲  刘有军  刘艳东  梁伟  张薇  程晓光  杨海胜 
单位:北京工业大学生命科学与生物工程学院生物医学工程系(北京100124) 北京积水潭医院放射科(北京100035)
关键词: 显微磁共振成像;  有限元分析;骨质疏松;股骨;骨折风险评价 
分类号:R318.01
出版年·卷·期(页码):2020·39·2(111-116)
摘要:

目的 本研究利用高分辨率显微磁共振成像(micro-magnetic resonance imaging, μMRI)在呈现骨微结构方面的优势和对人体无辐射的优点,结合有限元分析(finite element analysis, FEA),无创探究人体在自然站立状态下股骨近端微观力学行为,明确股骨易骨折危险区域,为μMRI-FEA未来临床应用提供理论基础。方法 采集5例年龄55~63岁女性志愿者(58.4岁±3.4岁)的股骨近端μMRI图像。将图像中骨骼和软组织分割,三维重建得到包含股骨近端皮质骨和松质骨微结构的大尺度三维有限元模型(约一千万六面体单元),赋予非均匀材料属性。模拟人体自然站立时股骨的受力,将其远端固定,在股骨头部位施加压缩载荷,进行线弹性有限元分析,得到股骨近端的应力和应变分布,并选取股骨颈和大转子部位10 mm3松质骨感兴趣区域进行比较。结果 人体自然站立姿态下,股骨颈上、下侧皮质骨分别出现拉、压应力集中现象。股骨颈松质骨感兴趣区域在上下(superior-inferior, SI)、内外(medial-lateral, ML)和前后(anterior-posterior, AP)三个方向上的正应力(σSI、σML、σAP)分别为大转子部位的13.4、2.2和1.9倍;正应变(εSI、εML、εAP)分别为大转子部位的7.4、5.0和4.0倍。结论 自然站立时股骨颈皮质骨和松质骨所受应力和应变较大,提示股骨颈是易发生骨折的高危区域,与临床观察一致。本研究为μMRI-FEA未来应用于临床无创评估股骨骨折风险进而鉴别骨折高风险人群提供了一定的前期理论支撑。

Objective Taking the advantages of high-resolution micro magnetic resonance imaging (μMRI) on visualizing bone microstructure and having little radiation to patients, the current study used μMRI in combination with finite element analysis (FEA) to non-invasively explore the micromechanical behavior of the human femur under standing posture in order to identify regions at high risks of femoral fractures and eventually to provide a theoretical basis for future clinical applications of μMRI-FEA. Methods μMRI images of the proximal femurs were obtained from 5 female volunteers aged 55-63 years (mean 58.4±3.4 years old). The proximal femurs were segmented out from surrounding muscles and other soft tissues in the images. Large-scale three-dimensional finite element models (about 10 million hexahedral elements), including cortical and cancellous bone microstructures, were built and assigned with inhomogeneous material properties. To simulate the loading condition of the femur for the standing posture, the distal femur was fixed and a compressive load was applied to the femoral head. Linear elastic FEA was performed to obtain the distributions of stress and strain in the proximal femur. Regions of interest of 10 mm3 cancellous bone in the femoral neck and greater trochanter were selected for comparative analysis. Results Under the standing posture, tensile and compressive stress concentrations were observed in superior and inferior cortical bone of the femoral neck, respectively. For the cancellous regions of interest, the normal stresses along the superior-inferior (SI), medial-lateral (ML), and anterior-posterior (AP) directions (σSI, σML and σAP) in the femoral neck were 13.4, 2.2 and 1.9 times greater than those in the greater trochanter; the normal strains (εSI, εML, and εAP) in the femoral neck were 7.4 times, 5.0 times, and 4.0 times greater than those of the greater trochanter region. Conclusions Under the standing posture, the cortical and cancellous bone in the femoral neck was subjected to high stress and strain, indicating that the femoral neck is a region at high risk of fractures. This result is consistent with clinical observations. This study provides some preliminary theoretical basis for the future application of μMRI-FEA in clinical non-invasive assessment of fracture risk and identification of high-risk population.

参考文献:

[1] Consensus A. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis[J]. The American Journal of Medicine, 1993, 94(6): 646-650.  

[2] Wang Y, Tao Y, Hyman ME, et al. Osteoporosis in China[J]. Osteoporosis International, 2009, 20(10): 1651-1662.

[3] Wang L, Museyko O, Su Y, et al. QCT of the femur: comparison between QCTPro CTXA and MIAF femur[J]. Bone, 2019, 120: 262-270.

[4] González-Quevedo D, Bautista-Enrique D, Pérez-del-Río V, et al. Fracture liaison service and mortality in elderly hip fracture patients: a prospective cohort study[J]. Osteoporosis International, 2020,31(1): 77-84.

[5] Wang X, Sanyal A, Cawthon PM, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans[J]. Journal of Bone and Mineral Research, 2012, 27(4): 808-816.

[6] Lochmüller EM, Miller P, Bürklein D, et al. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur[J]. Osteoporosis International, 2000, 11(4): 361-367.

[7] Overton TR. Quantitative computed tomography [J]. Radiologic Clinics of North America, 2002, 06(03):219-228.

[8] Viceconti M, Qasim M, Bhattacharya P, et al. Are CT-based finite element model predictions of femoral bone strengthening clinically useful?[J]. Current Osteoporosis Reports, 2018,16(3): 216-223.

[9] Yang H, Ma X, Guo T. Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur[J]. Medical Engineering and Physics, 2010, 32(6):553-560.

[10] 郑江,吴起宁,秦四清,等. 扫描电镜下老年性骨质疏松患者骨微结构的变化[J].陕西医学杂志, 2003, 32(5):400-403.

Zheng J, Wu QN, Qin SQ, et al. Changes of the microstructure of the bone from the osteoporotic patients under the scanning electron microscopy[J].Shaanxi Medical Journal, 2003, 32(5):400-403.

[11] 裴葆青, 王田苗, 王军强. 松质骨微观骨小梁结构的生物力学有限元分析[J]. 北京生物医学工程, 2008, 27(2):120-122.

Pei BQ, Wang TM, Wang JQ. The comprehensive biomechanical analysis of microcosmic trabecular structure of cancellous bone[J]. Beijing Biomedical Engineering, 2008, 27(2):120-122.

[12] Rajapakse CS, Leonard MB, Bhagat YA, et al. Micro–MR imaging–based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation[J]. Radiology, 2012, 262(3):912-920.

[13] Nawathe S, Yang H, Fields AJ, et al. Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body[J]. Journal of Biomechanics, 2015, 48(7): 1264-1269.

[14] 徐辉煌, 张海宇, 林勇. 基于多粒度级联森林的骨质疏松性骨折预测研究[J]. 北京生物医学工程, 2019, 38(4):384-391.

Xu HH, Zhang HY, Lin Y. Prediction of osteoporotic fracture based on multi-grained cascade forest [J]. Beijing Biomedical Engineering, 2019, 38(4):384-391.

[15] Rajapakse CS, Chang G. Micro-finite element analysis of the proximal femur on the basis of high-resolution magnetic resonance images[J]. Current Osteoporosis Reports, 2018, 16(6): 657-664.

[16] Chang G, Rajapakse CS, Chen C, et al. 3-T MR Imaging of proximal femur microarchitecture in subjects with and without fragility fracture and nonosteoporotic proximal femur bone mineral density[J]. Radiology, 2018, 287(2): 608-619.

[17] Rajapakse CS, Kobe EA, Batzdorf AS, et al. Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing[J]. Bone, 2018, 108: 71-78.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com