[1] 张丹, 李彩英, 高不郎, 等. 颅内动脉瘤血流动力学发病机制研究进展[J]. 介入放射学杂志, 2017, 26(4):378-382.
Zhang D, Li CY, Gao BL, et al. Advances in the research of hemodynamics of the pathogenesis of intracranial aneurysms[J]. Journal of Interventional Radiology, 2017, 26(4):378-382.
[2] Meng H, Tutino VM, Xiang J, et al. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis[J]. AJNR. American Journal of Neuroradiology, 2014, 35(7):1254-1262.
[3] Brinjikji W, Zhu YQ, Lanzino G, et al. Risk factors for growth of intracranial aneurysms: a systematic review and meta-analysis[J]. AJNR. American Journal of Neuroradiology, 2016, 37(4):615-620.
[4] Xiang J, Natarajan SK, Tremmel M, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture[J]. Stroke, 2011, 42(1): 144-152.
[5] 魏社鹏,赵继宗. 未破裂颅内动脉瘤的研究进展[J]. 国际神经病学神经外科学杂志, 2017, 44(3): 311-315.
[6] 崔刚, 翟宝进, 焦德让. 胶原蛋白基因与颅内动脉瘤[J]. 国际脑血管病杂志, 2008, 16(10):791-793.
Cui G, Zhai BJ, Jiao DR. Collagen genes and intracranial aneurysm[J]. 国际脑血管病杂志, 2008, 16(10): 791-793.
[7] 胡文超. 动脉血管力学模型及损伤机制研究[D]. 重庆: 重庆大学, 2016.
Hu WC. Study on mechanical model and damaged mechanism of arterial vessel[D]. Chongqing: Chongqing University, 2016.
[8] 张星, 刘建民, 黄清海. 脑动脉瘤血流动力学数值模拟研究及其临床意义[J]. 介入放射学杂志, 2008, 17(12):898-902.
Zhang X, Liu JM, Huang QH. Numerical virtual studies and clinical significance of the hemodynamics for cerebral aneurysms[J]. Journal of Interventional Radiology, 2008, 17(12): 898-902.
[9] 丁金立, 李宏军, 张岩岩, 等. 个性化肝癌患者肝脏相关动脉血管的三维容积重建及其应用[J]. 北京生物医学工程, 2016, 35(6): 620-625.
Ding JL, Li HJ, Zhang YY, et al. Three-dimensional volume reconstruction of hepatic arteries for individual HCC patientsand its application[J]. Beijing Biomedical Engineering, 2016, 35(6): 620-625.
[10] 田雪涛, 卜雄建, 姬中庆. 颅内未破裂与破裂合并冠心病患者动脉瘤血流动力学数值模拟研究[J]. 国际心血管病杂志, 2017, 44(S): 229.
[11] 沈雷, 张永巍, 吕楠, 等. 症状性大脑中动脉粥样硬化性狭窄的血流动力学数值模拟研究[J]. 中国卒中杂志, 2016, 11(1): 54-60.
Shen L, Zhang YW, Lyu N, et al. Computational fluid dynamic study of symptomatic middle cerebral artery atherosclerotic stenosis[J]. Chinese Journal of Stroke, 2016, 11(1): 54-60.
[12] 曹强. 多层面螺旋CTA三维重建技术在评价脑动脉瘤中的应用——与DSA对比研究[D]. 沈阳:中国医科大学, 2003.
Cao Q. Three dimensional multislice CT during angiography in the evaluation of cerebral aneurysms—a comparative study with intraarterial digital subtraction angiography[D]. Shenyang: China Medical University, 2003. [13] Vo? S, Gla?er S, Hoffmann T, et al. Fluid-structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness[J]. Computational and Mathematical Methods in Medicine,2016, 2016: 9854539.
[14] Xiang J, Tutino VM, Snyder KV, et al. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment[J]. AJNR. American Journal of Neuroradiology,2014, 35(10):1849-1857.
[15] Zhang Y, Jing L, Liu J, et al. Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms[J]. Journal of NeuroInterventional Surgery, 2016, 8(8): 808-812.
[16] 张明超. 颅内动脉瘤计算流体动力学研究[D]. 太原: 太原理工大学, 2015.
Zhang MC. Computational fluid dynamics analysis in the intracranial aneurysm[D]. Taiyuan: Taiyuan University of Technology, 2015. [17] 李响, 杨洁, 贾凌云, 等. 大脑中动脉重度狭窄或闭塞性病变脑膜支代偿对颅外段颈内动脉血流动力学的影响[J]. 中华医学超声杂志(电子版), 2017, 14(6): 433-440.
Li X, Yang J, Jia LY, et al. The effect of leptomeningealanastomoseson hemodynamic changes of extracranial internal carotid artery in middle cerebral artery severe stenosis and occlusion disease[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2017, 14(6): 433-440.
|