设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
个性化颅内动脉瘤患者脑动脉血管三维容积重建及其应用

Three-dimensional volume reconstruction of cerebral arteries for an individual patient with intracranial aneurysm and its application

作者: 丁金立  王海阔  马国峰  张勇  苗成鹏  段云云  张磊 
单位:首都医科大学附属北京天坛医院放射科(北京 100050)
关键词: 三维容积重建;  脑动脉瘤;  计算机断层扫描血管造影;  平滑技术;  迭代 
分类号:R318.01
出版年·卷·期(页码):2020·39·2(117-122)
摘要:

目的 对个性化颅内动脉瘤患者动脉瘤周围脑动脉血管进行三维容积重建,探索平滑迭代次数对三维模型的影响。方法 针对个性化颅内动脉瘤患者,通过Philips公司的256排iCT进行计算机断层扫描血管造影(computed tomography angiography, CTA),基于256层头部连续断层图像,利用Mimics商业软件进行三维图像容积重建,获取动脉瘤周围动脉血管的三维解剖结构,对重建模型表面进行6次平滑处理,对比分析3D模型的瘤体直径与2D切片图像测得的瘤体直径,评估3D模型的精确性。结果 通过三维容积重建方法得到了动脉瘤周围的颈内动脉C2-C7段、大脑中动脉、大脑前动脉等血管的三维容积模型。平滑迭代次数为3时,模型表面较平滑,颈内动脉血管直径为3.82~5.64 mm,双侧大脑中动脉血管直径2.31~3.83 mm,大脑前动脉血管可见多级分支,动脉瘤长径14.70mm和短径10.32mm。动脉瘤瘤体的长径和短径与2D图像上的测量结果相比误差均在4%以内。结论 利用三维容积重建技术所得的动脉瘤周围脑血管模型提供了较二维图像更直观的解剖显示和更好的后处理优势;过度平滑处理会导致三维重建模型尺寸与实际瘤体出现偏差,合理选择平滑迭代次数对三维模型的精确重建具有实际意义。

Objective To carry out the three-dimensional volume reconstruction of cerebral arteries for an individual patient with intracranial aneurysm, and to discuss the influence of different iterations of smooth technology on the reconstrued model. Methods Philips 256 iCT was employed to perform computed tomography  angiography (CTA), from which 256 slices were utilized for three-dimensional (3D) volume reconstruction by using the commercial software Mimics. Six iterations of smooth technology were performed on the reconstrued model. The longest and shortest diameters of the aneurysm was measured in the 3D model and compared with the results measured from 2D slices, to evaluate the precision of the smoothed models. Results The three-dimensional model of cerebral arteries and the intracranial aneurysms reconstructed after 3 iterations of smooth technology were measured. They included internal carotid artery of 3.82 mm-5.64 mm, bilateral middle cerebral artery of  2.31 mm-3.83 mm, multi-branches of anterior cerebral artery, intracranial aneurysm ( with longest diameter of 14.70 mm and shortest diameter of 10.32 mm). All the diameter-error ranges of the aneurysm were controlled within 4%. Conclusions The 3D model reconstructed by the volume reconstruction provides a more visual display than the original CT images. Application of excessive iterations of smooth technology increase the error of reconstrued model. Appropriate iterations of smooth technology is important for accurate 3D reconstruction.

参考文献:

[1] 张丹, 李彩英, 高不郎, 等. 颅内动脉瘤血流动力学发病机制研究进展[J]. 介入放射学杂志, 2017, 26(4):378-382. Zhang D, Li CY, Gao BL, et al. Advances in the research of hemodynamics of the pathogenesis of intracranial aneurysms[J]. Journal of Interventional Radiology, 2017, 26(4):378-382.

[2] Meng H, Tutino VM, Xiang J, et al. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis[J]. AJNR. American Journal of Neuroradiology, 2014, 35(7):1254-1262.

[3] Brinjikji W, Zhu YQ, Lanzino G, et al. Risk factors for growth of intracranial aneurysms: a systematic review and meta-analysis[J]. AJNR. American Journal of Neuroradiology, 2016, 37(4):615-620.

[4] Xiang J, Natarajan SK, Tremmel M, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture[J]. Stroke, 2011, 42(1): 144-152.

[5] 魏社鹏,赵继宗. 未破裂颅内动脉瘤的研究进展[J]. 国际神经病学神经外科学杂志, 2017, 44(3): 311-315.

[6] 崔刚, 翟宝进, 焦德让. 胶原蛋白基因与颅内动脉瘤[J]. 国际脑血管病杂志, 2008, 16(10):791-793. Cui G, Zhai BJ, Jiao DR. Collagen genes and intracranial aneurysm[J]. 国际脑血管病杂志, 2008, 16(10): 791-793.

[7] 胡文超. 动脉血管力学模型及损伤机制研究[D]. 重庆: 重庆大学, 2016. Hu WC. Study on mechanical model and damaged mechanism of arterial vessel[D]. Chongqing: Chongqing University, 2016.

[8] 张星, 刘建民, 黄清海. 脑动脉瘤血流动力学数值模拟研究及其临床意义[J]. 介入放射学杂志, 2008, 17(12):898-902. Zhang X, Liu JM, Huang QH. Numerical virtual studies and clinical significance of the hemodynamics for cerebral aneurysms[J]. Journal of Interventional Radiology, 2008, 17(12): 898-902.

[9] 丁金立, 李宏军, 张岩岩, 等. 个性化肝癌患者肝脏相关动脉血管的三维容积重建及其应用[J]. 北京生物医学工程, 2016, 35(6): 620-625. Ding JL, Li HJ, Zhang YY, et al. Three-dimensional volume reconstruction of hepatic arteries for individual HCC patientsand its application[J]. Beijing Biomedical Engineering, 2016, 35(6): 620-625.

[10] 田雪涛, 卜雄建, 姬中庆. 颅内未破裂与破裂合并冠心病患者动脉瘤血流动力学数值模拟研究[J]. 国际心血管病杂志, 2017, 44(S): 229.

[11] 沈雷, 张永巍, 吕楠, 等. 症状性大脑中动脉粥样硬化性狭窄的血流动力学数值模拟研究[J]. 中国卒中杂志, 2016, 11(1): 54-60. Shen L, Zhang YW, Lyu N, et al. Computational fluid dynamic study of symptomatic middle cerebral artery atherosclerotic stenosis[J]. Chinese Journal of Stroke, 2016, 11(1): 54-60.

[12] 曹强. 多层面螺旋CTA三维重建技术在评价脑动脉瘤中的应用——与DSA对比研究[D]. 沈阳:中国医科大学, 2003. Cao Q. Three dimensional multislice CT during angiography in the evaluation of cerebral aneurysms—a comparative study with intraarterial digital subtraction angiography[D]. Shenyang: China Medical University, 2003.

[13] Vo? S, Gla?er S, Hoffmann T, et al. Fluid-structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness[J]. Computational and Mathematical Methods in Medicine,2016, 2016: 9854539.

[14] Xiang J, Tutino VM, Snyder KV, et al. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment[J]. AJNR. American Journal of Neuroradiology,2014, 35(10):1849-1857.

[15] Zhang Y, Jing L, Liu J, et al. Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms[J]. Journal of NeuroInterventional Surgery, 2016, 8(8): 808-812.

[16] 张明超. 颅内动脉瘤计算流体动力学研究[D]. 太原: 太原理工大学, 2015. Zhang MC. Computational fluid dynamics analysis in the intracranial aneurysm[D]. Taiyuan: Taiyuan University of Technology, 2015.

[17] 李响, 杨洁, 贾凌云, 等. 大脑中动脉重度狭窄或闭塞性病变脑膜支代偿对颅外段颈内动脉血流动力学的影响[J]. 中华医学超声杂志(电子版), 2017, 14(6): 433-440. Li X, Yang J, Jia LY, et al. The effect of leptomeningealanastomoseson hemodynamic changes of extracranial internal carotid artery in middle cerebral artery severe stenosis and occlusion disease[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2017, 14(6): 433-440.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com