[1]杨晓蕾,杨超,张钦婷,孙权,葛杰.恶性肿瘤患者中医体质类型相关研究[J].辽宁中医药大学学报,2015,17(8):164-166.
Yang XL, Yang C, Zhang QT, et al. Malignant tumor patients with traditional chinese medicine constitution type of related research[J].Journal of Liaoning University of Traditional Chinese Medicine,2015,17(8): 164-166.
[2]中国中西医结合研究会肿瘤专业委员会中医诊断协作组.4417例癌症患者舌象临床观察[J].浙江中医杂志, 1992, 37 (8): 368-369.
[3] 钱峻, 刘沈林.消化系恶性肿瘤舌象辨治探微[J].吉林中医药, 2005, 25 (12) :1-2.
[4]Litjens G, Kooi T, Bejnordi BE , et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60-88.
[5]Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review[J]. Neural Computation, 2017, 29(9): 2352-2449.
[6]刘飞, 张俊然, 杨豪. 基于深度学习的医学图像识别研究进展[J].中国生物医学工程学报,2018,37(1):86-94.
Liu F,ZhangJR,YangH. Research progress of medical image recognition based on deep learning[J]. Chinese Journal of Biomedical Engineering,2018,37(1):86-94.
[7]LeCunY, BengioY, Hinton G. Deep learning[J]. Nature,2015,521(7553):436-444.
[8] Brown GW. On small-sample estimation[J].The Annals of Mathematical Statistics,1947, 18(4): 582-585.
[9] Koch G, Zemel R, Salakhutdinov R. Siamese neural networks for one-shot image recognition[C]// International Conference on Machine Learning. Lille France:JMLR, W CP, 2015, 37.
[10]Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems. Long Beach,America: NIPS, 2017: 4077-4087.
[11] Ravi S,LarochelleH. Optimization as a model for few-shot learning[C]//International Conference on Learning Representations (ICLR).Toulon, France: ICLR, 2017.
[12]张新峰, 沈兰荪. 加权SVM在中医舌象分类与识别中的应用研究[J]. 中国生物医学工程学报, 2006, 25(2):230-233.
Zhang XF, Shen LS. Application of weighted SVM on the classification and recognition of tongue images[J]. Chinese Journal of Biomedical Engineering,2006, 25(2):230-233.
[13] 胡继礼, 阚红星. 基于卷积神经网络的舌象分类[J]. 安庆师范大学学报(自然科学版),2018,24(4):44-49.
Hu JL, Kan HX.Tongue classification based on convolutional neural network[J]. Journal of Anqing Normal University(Natural Science Edition),2018, 24(4): 44-49.
[14] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE Press,2016: 770-778.
[15]Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, Massachusetts,USA: IEEE Press, 2015: 1-9.
[16]Lin, Min, Chen, Qiang, Yan, Shuicheng. Network In Network[J]. Computer Science, 2013.
[17]Amato G, Falchi F. kNN based image classification relying on local feature similarity[C]// Third International Workshop on Similarity Search and Applications. Istanbul, Turkey:SISAP, 2010: 101-108.
[18]Bottou L. Stochastic gradient learning in neural networks[J]. Proceedings of Neuro-N?mes, 1991,91(8): 12.
[19]Wold S, Esbensen KH, Geladi P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1-3):37-52.
[20] 王琦.中医体质学[M].北京:中国医药科技出版社, 1995.
[21]Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks?[C]//Advances in Neural Information Processing Systems(NIPS). Montreal, Canada:NIPS,2014: 3320-3328.
[22]Schroff F, Kalenichenko D, Philbin J. Facenet: a unified embedding for face recognition and clustering[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE Press, 2015: 815-823.
[23]LeCun Y, Boser BE, Denker J, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. 1990: 396-404.
[24]杨晶东, 张朋. 基于迁移学习的全连接神经网络舌象分类方法[J]. 第二军医大学学报, 2018, 39(8): 897-902.
Yang JD, Zhang P. Tongue image classification method based on transfer learning and fully connected neural network[J]. Academic Journal of Second Military Medical University, 2018, 39(8): 897-902.
[25] Parkhi OM, Vedaldi A, Zisserman A. Deep face recognition[C]//British Machine Vision Conference. Swansea, UK: BMVC, 2015.
[26] Taigman Y, Yang M, Ranzato MA, et al. DeepFace: closing the gap to human-level performance in face veri?cation[C]// Conference on Computer Vision and Pattern Recognition. Columbus, USA:IEEE Press, 2014: 1701–1708.
|